Shayn M. Peirce-Cottler


Primary Appointment

Professor, Biomedical Engineering


  • BS, Biomedical Engineering, Johns Hopkins University
  • PhD, Biomedical Engineering, University of Virginia

Research Disciplines

Biomedical Engineering, Biophysics, Biotechnology, Cardiovascular Biology, Computational Biology, Physiology, Translational Science

Research Interests

Tissue Engineering and Regeneration, Computational Systems Biology, Vascular Growth and Remodeling, Stem Cell Therapies

Research Description

The Important Role of the Microcirculation:
Every organ in the body is dependent on blood flow to provide the necessary oxygen and nutrients in order to stay alive. The circulatory system is responsible for delivering blood to and from all of the tissues, and the microcirculation is the set of the smallest blood vessels in the body. (Microvessels are less than 100 micrometers in diameter, and they can only be visualized using a microscope!) Our research is interested in understanding how microvessels grow and remodel during normal physiological development and in the setting of different important diseases where their involvement in disease progression is absolutely central, such as heart disease, peripheral vascular disease, diabetic retinopathy, cancer, and chronic wound formation.
The Microcirculation in Tissue Engineering and Regenerative Medicine:
We are are also interested in applying our knowledge of the microcirculation in order to grow new tissues (tissue engineering) and regenerate damaged tissues in the body (tissue regeneration). In fact, without a blood supply (ie. without microvessels) tissues beyond the small size of 1 cubic millimeter cannot survive in the body. Therefore, our research aims to address a critical bottleneck for all of tissue engineering and regenerative medicine aspirations: growing new functional and sustainable microvessels that can deliver blood to the tissues that we are trying to heal and/or replace.
Specific Research Goals:
The overarching goals of our research are to: 1) understand how tissues, or collections of biological cells and their extracellular matrix environment, grow and adapt in response to physiological and pathological environmental (i.e. biochemical and mechanical) stimuli, and 2) use this information to develop therapeutic strategies for invoking/promoting tissue regeneration and repair. We are predominantly interested in pursuing these goals within the context of the adult microvascular system, which is essential in many human diseases, including heart disease, cancer, and chronic wounds. All of our projects combine multi-cell computational modeling with experimental analyses.

Personal Statement

Microvascular Tissue Engineering

Every tissue in the body needs a blood supply, and that demand is met by a network of interconnected blood vessels called the microcirculation. The microcirculation is a highly adaptable system of small blood vessels that are a tenth of the diameter of a human hairâ-you need a microscope to see themâ-and there are over a million microvessels in a single gram of tissue. Microvascular growth and remodeling are important processes in nearly every major disease, including diabetes, heart disease, peripheral vascular disease, stroke, neurodegenerative diseases, and cancer. In our lab, we develop and use experimental and computational techniques to study and design new approaches for growing and regenerating injured and diseased tissues by manipulating the structure and composition of the microvasculature.


Human progenitor cells as therapeutic targets for tissue engineering:

Vascular growth and remodeling in adult mammals involves numerous cell types and cellular behaviors, and is critical for adaptation to exercise, therapeutic revascularization of ischemic tissues, and tissue engineering. A growing body of literature suggests that human adipose-derived cells possess previously unrecognized developmental plasticity, in vitro and in vivo. In collaboration with Dr. Adam Katz (UVa Plastic Surgery Dept.), we investigate the capacity for human adipose-derived progenitor cells to behave as perivascular support cells,  their contribution to in vivo remodeling,  and their therapeutic potential in revascularization. To this end, our studies characterize their structural and morphological interactions with microvessels, their proliferative activity, and their phenotypic changes in the in vivo tissue environment. This data allows us to further determine their effects on microvascular growth, maintenance, and capillary permeability. Since human adipose-derived cells are readily available,  characterization of their behavior may yield novel therapeutic approaches to many vascular diseases as well as knowledge of how perivascular support cells, in general, participate in microvascular remodeling.

Arterial/Venous Polarity:

The arterial and venous components of the circulation differ fundamentally in physiological function, cellular composition, and flow dynamics. Identifying the cell phenotypes associated with arterial/venous (A/V) determination is critical for understanding how the circulation develops, matures, functions to deliver blood to and from the tissues, and adapts to pathological stimuli. Recently, the discovery of A/V phenotypic markers has provided insight into vascular tree development and microvascular remodeling in the adult. We have identified a proteoglycan that is differentially expressed in arterioles vs. venules in rat tissues. Using the differential expression of this marker and the expression of other vascular-specific markers, our lab tries to understand the signals responsible for conferring an artery or vein phenotype to new and pre-existing vessels and maintaining that phenotype as the tissue undergoes adaptation and growth.


  • Basic Cardiovascular Research Training Grant
  • Biotechnology Training Grant
  • Training in Cell and Molecular Biology
  • Training in Molecular Biophysics
  • Training in the Pharmacological Sciences

Selected Publications


Pruett, L. J., Taing, A. L., Singh, N. S., Peirce, S. M., & Griffin, D. R. (2022). In silico optimization of heparin microislands in microporous annealed particle hydrogel for endothelial cell migration. ACTA BIOMATERIALIA, 148, 171-180. doi:10.1016/j.actbio.2022.05.049

Sun, N., Bruce, A. C., Ning, B. O., Cao, R. U. I., Wang, Y., Zhong, F., . . . Hu, S. (2022). Photoacoustic microscopy of vascular adaptation and tissue oxygen metabolism during cutaneous wound healing. BIOMEDICAL OPTICS EXPRESS, 13(5), 2695-2706. doi:10.1364/BOE.456198

Torres-Castro, K., Azimi, M. S., Varhue, W. B., Honrado, C., Peirce, S. M., & Swami, N. S. (2022). Biophysical quantification of reorganization dynamics of human pancreatic islets during co-culture with adipose-derived stem cells. ANALYST, 147(12), 2731-2738. doi:10.1039/d2an00222a

Agmon, E., Spangler, R. K., Skalnik, C. J., Poole, W., Peirce, S. M., Morrison, J. H., & Covert, M. W. (2022). Vivarium: an interface and engine for integrative multiscale modeling in computational biology. BIOINFORMATICS, 38(7), 1972-1979. doi:10.1093/bioinformatics/btac049


Hannan, R. T., Miller, A. E., Hung, R. -C., Sano, C., Peirce, S. M., & Barker, T. H. (2021). Extracellular matrix remodeling associated with bleomycin-induced lung injury supports pericyte-to-myofibroblast transition.. Matrix biology plus, 10, 100056. doi:10.1016/j.mbplus.2020.100056

Rikard, S. M., Myers, P. J., Almquist, J., Gennemark, P., Bruce, A. C., Wagberg, M., . . . Peirce, S. M. (2021). Mathematical Model Predicts that Acceleration of Diabetic Wound Healing is Dependent on Spatial Distribution of VEGF-A mRNA (AZD8601). CELLULAR AND MOLECULAR BIOENGINEERING, 14(4), 321-338. doi:10.1007/s12195-021-00678-9

Westman, A. M., Peirce, S. M., Christ, G. J., & Blemker, S. S. (2021). Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLOS COMPUTATIONAL BIOLOGY, 17(5). doi:10.1371/journal.pcbi.1008937

Mendelson, A. A., Lam, F., Peirce, S. M., & Murfee, W. L. (2021). Clinical perspectives on the microcirculation. MICROCIRCULATION, 28(3). doi:10.1111/micc.12688

Virgilio, K. M., Jones, B. K., Miller, E. Y., Ghajar-Rahimi, E., Martin, K. S., Peirce, S. M., & Blemker, S. S. (2021). Computational Models Provide Insight into In Vivo Studies and Reveal the Complex Role of Fibrosis in mdx Muscle Regeneration. ANNALS OF BIOMEDICAL ENGINEERING, 49(2), 536-547. doi:10.1007/s10439-020-02566-1


Almquist, J., Rikard, S. M., Wagberg, M., Bruce, A. C., Gennemark, P., Fritsche-Danielson, R., . . . Lundahl, A. (2020). Model-Based Analysis Reveals a Sustained and Dose-Dependent Acceleration of Wound Healing by VEGF-A mRNA (AZD8601). CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 9(7), 384-394. doi:10.1002/psp4.12516

Corliss, B. A., Doty, R. W., Mathews, C., Yates, P. A., Zhang, T., & Peirce, S. M. (2020). REAVER: A program for improved analysis of high-resolution vascular network images. MICROCIRCULATION, 27(5). doi:10.1111/micc.12618

Leonard-Duke, J., Evans, S., Hannan, R. T., Barker, T. H., Bates, J. H. T., Bonham, C. A., . . . Peirce, S. M. (2020). Multi-scale models of lung fibrosis. MATRIX BIOLOGY, 91-92, 35-50. doi:10.1016/j.matbio.2020.04.003

Ray, H. C., Corliss, B. A., Bruce, A. C., Kesting, S., Dey, P., Mansour, J., . . . Yates, P. A. (2020). Myh11+microvascular mural cells and derived mesenchymal stem cells promote retinal fibrosis. SCIENTIFIC REPORTS, 10(1). doi:10.1038/s41598-020-72875-x

Tavakol, D. N., Schwager, S. C., Jeffries, L. A., Bruce, A., Corliss, B. A., DeRosa, C. A., . . . Cottler, P. S. (2020). Oxygen-Sensing Biomaterial Construct for Clinical Monitoring of Wound Healing. ADVANCES IN SKIN & WOUND CARE, 33(8), 428-436. doi:10.1097/01.ASW.0000666912.86854.2b

Almquist, J., Rikard, S. M., Wagberg, M., Bruce, A. C., Gennemark, P., Fritsche-Danielson, R., . . . Lundahl, A. (2020). Model-Based Analysis Reveals a Sustained and Dose-Dependent Acceleration of Wound Healing by VEGF-A mRNA (AZD8601). CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 9(7), 384-394. doi:10.1002/psd4.12516

Corliss, B. A., Ray, H. C., Doty, R. W., Mathews, C., Sheybani, N., Fitzgerald, K., . . . Peirce, S. M. (2020). Pericyte Bridges in Homeostasis and Hyperglycemia. DIABETES, 69(7), 1503-1517. doi:10.2337/db19-0471

Bour, R. K., Sharma, P. R., Turner, J. S., Hess, W. E., Mintz, E. L., Latvis, C. R., . . . Christ, G. J. (2020). Bioprinting on sheet-based scaffolds applied to the creation of implantable tissue-engineered constructs with potentially diverse clinical applications: Tissue-Engineered Muscle Repair (TEMR) as a representative testbed. CONNECTIVE TISSUE RESEARCH, 61(2), 216-228. doi:10.1080/03008207.2019.1679800

Sun, N., Ning, B., Bruce, A. C., Cao, R., Seaman, S. A., Wang, T., . . . Hu, S. (2020). In vivo imaging of hemodynamic redistribution and arteriogenesis across microvascular network. MICROCIRCULATION, 27(3). doi:10.1111/micc.12598


Welsh, D. G., & Peirce-Cottler, S. (2019). Highlights from the World Congress of Microcirculation 2018. MICROCIRCULATION, 26(4). doi:10.1111/micc.12545

Lee, J. -J., Talman, L., Peirce, S. M., & Holmes, J. W. (2019). Spatial scaling in multiscale models: methods for coupling agent-based and finite-element models of wound healing. BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 18(5), 1297-1309. doi:10.1007/s10237-019-01145-1

Renardy, M., Wessler, T., Blemker, S., Linderman, J., Peirce, S., & Kirschner, D. (2019). Data-Driven Model Validation Across Dimensions. BULLETIN OF MATHEMATICAL BIOLOGY, 81(6), 1853-1866. doi:10.1007/s11538-019-00590-4

Talman, L., Agmon, E., Peirce, S. M., & Covert, M. W. (2019). Multiscale models of infection. CURRENT OPINION IN BIOMEDICAL ENGINEERING, 11, 102-108. doi:10.1016/j.cobme.2019.10.001

Warner, H. V., Sivakumar, N., Peirce, S. M., & Lazzara, M. J. (2019). Multiscale computational models of cancer. CURRENT OPINION IN BIOMEDICAL ENGINEERING, 11, 137-144. doi:10.1016/j.cobme.2019.11.002

Corliss, B. A., Ray, H. C., Patrie, J. T., Mansour, J., Kesting, S., Park, J. H., . . . Peirce, S. M. (2019). CIRCOAST: a statistical hypothesis test for cellular colocalization with network structures (vol 35, pg 506, 2019). BIOINFORMATICS, 35(4), 720-721. doi:10.1093/bioinformatics/bty797

Rikard, S. M., Athey, T. L., Nelson, A. R., Christiansen, S. L. M., Lee, J. -J., Holmes, J. W., . . . Saucerman, J. J. (2019). Multiscale Coupling of an Agent-Based Model of Tissue Fibrosis and a Logic-Based Model of Intracellular Signaling. FRONTIERS IN PHYSIOLOGY, 10. doi:10.3389/fphys.2019.01481

Corliss, B. A., Ray, H. C., Mathews, C., Fitzgerald, K., Doty, R. W., Smolko, C. M., . . . Yates, P. A. (2019). Myh11 Lineage Corneal Endothelial Cells and ASCs Populate Corneal Endothelium. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 60(15), 5095-5103. doi:10.1167/iovs.19-27276

Corliss, B. A., Delalio, L. J., Keller, T. C. S., Keller, A. S., Keller, D. A., Corliss, B. H., . . . Isakson, B. E. (2019). Vascular Expression of Hemoglobin Alpha in Antarctic Icefish Supports Iron Limitation as Novel Evolutionary Driver. FRONTIERS IN PHYSIOLOGY, 10. doi:10.3389/fphys.2019.01389

Hess, D. L., Kelly-Goss, M. R., Cherepanova, O. A., Nguyen, A. T., Baylis, R. A., Tkachenko, S., . . . Owens, G. K. (2019). Perivascular cell-specific knockout of the stem cell pluripotency gene Oct4 inhibits angiogenesis. NATURE COMMUNICATIONS, 10. doi:10.1038/s41467-019-08811-z

Corliss, B. A., Mathews, C., Doty, R., Rohde, G., & Peirce, S. M. (2019). Methods to label, image, and analyze the complex structural architectures of microvascular networks. MICROCIRCULATION, 26(5). doi:10.1111/micc.12520

Urner, S., Planas-Paz, L., Hilger, L. S., Henning, C., Branopolski, A., Kelly-Goss, M., . . . Lammert, E. (2019). Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth. EMBO JOURNAL, 38(2). doi:10.15252/embj.201899322

Corliss, B. A., Ray, H. C., Patrie, J. T., Mansour, J., Kesting, S., Park, J. H., . . . Peirce, S. M. (2019). CIRCOAST: a statistical hypothesis test for cellular colocalization with network structures. BIOINFORMATICS, 35(3), 506-514. doi:10.1093/bioinformatics/bty638


Sun, N., Ning, B., Hansson, K. M., Bruce, A. C., Seaman, S. A., Zhang, C., . . . Hu, S. (2018). Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing. SCIENTIFIC REPORTS, 8. doi:10.1038/s41598-018-35570-6

Hess, D. L., Kelly-Goss, M. R., Cherepanova, O., Nguyen, A. T., Annex, B. H., Peirce, S. M., & Owens, G. K. (2018). Perivascular Cell-specific Knockout of the Stem Cell Pluripotency Gene Oct4 Inhibits Angiogenesis in Part by Attenuating Perivascular and Endothelial Cell Migration. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 38. doi:10.1161/atvb.38.suppl_1.008

Suarez-Martinez, A. D., Peirce, S. M., Isakson, B. E., Nice, M., Wang, J., Lounsbury, K. M., . . . Murfee, W. L. (2018). Induction of microvascular network growth in the mouse mesentery. MICROCIRCULATION, 25(8). doi:10.1111/micc.12502

Virgilio, K. M., Martin, K. S., Peirce, S. M., & Blemker, S. S. (2018). Agent-based model illustrates the role of the microenvironment in regeneration in healthy and mdx skeletal muscle. JOURNAL OF APPLIED PHYSIOLOGY, 125(5), 1424-1439. doi:10.1152/japplphysiol.00379.2018

Urner, S., Kelly-Goss, M., Peirce, S. M., & Lammert, E. (2018). Mechanotransduction in Blood and Lymphatic Vascular Development and Disease.. Advances in pharmacology (San Diego, Calif.), 81, 155-208. doi:10.1016/bs.apha.2017.08.009

Smith, H. K., Omura, S., Vital, S. A., Becker, F., Senchenkova, E. Y., Kaur, G., . . . Gavins, F. N. E. (2018). Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke. FASEB JOURNAL, 32(5), 2381-2394. doi:10.1096/fj.201700746R

Tavakol, D. N., Broshkevitch, C. J., Guilford, W. H., & Peirce, S. M. (2018). Design and implementation of a student-taught course on research in regenerative medicine. ADVANCES IN PHYSIOLOGY EDUCATION, 42(2), 360-367. doi:10.1152/advan.00157.2017

Haskins, R. M., Nguyen, A. T., Alencar, G. F., Billaud, M., Kelly-Goss, M. R., Good, M. E., . . . Owens, G. K. (2018). Klf4 has an unexpected protective role in perivascular cells within the microvasculature. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 315(2), H402-H414. doi:10.1152/ajpheart.00084.2018

Danan, D., Lehman, C. E., Mendez, R. E., Langford, B., Koors, P. D., Dougherty, M. I., . . . Jameson, M. J. (2018). Effect of Adipose-Derived Stem Cells on Head and Neck Squamous Cell Carcinoma. OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 158(5), 882-888. doi:10.1177/0194599817750361


Walpole, J., Mac Gabhann, F., Peirce, S. M., & Chappell, J. C. (2017). Agent-based computational model of retinal angiogenesis simulates microvascular network morphology as a function of pericyte coverage. MICROCIRCULATION, 24(8). doi:10.1111/micc.12393

Adamson, S. E., Montgomery, G., Seaman, S. A., Peirce-Cottler, S. M., & Leitinger, N. (2018). Myeloid P2Y2 receptor promotes acute inflammation but is dispensable for chronic high-fat diet-induced metabolic dysfunction. PURINERGIC SIGNALLING, 14(1), 19-26. doi:10.1007/s11302-017-9589-9

Call, J. A., Donet, J., Martin, K. S., Sharma, A. K., Chen, X., Zhang, J., . . . Yan, Z. (2017). Muscle-derived extracellular superoxide dismutase inhibits endothelial activation and protects against multiple organ dysfunction syndrome in mice. FREE RADICAL BIOLOGY AND MEDICINE, 113, 212-223. doi:10.1016/j.freeradbiomed.2017.09.029

Hannan, R. T., Peirce, S. M., & Barker, T. H. (2018). Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS BIOMATERIALS SCIENCE & ENGINEERING, 4(4), 1223-1232. doi:10.1021/acsbiomaterials.7b00244

Seaman, S. A., Cao, Y., Campbell, C. A., & Peirce, S. M. (2017). Arteriogenesis in murine adipose tissue is contingent on CD68+/CD206+ macrophages. MICROCIRCULATION, 24(4). doi:10.1111/micc.12341

DeGeorge, B. R. J., Ning, B., Salopek, L. S., Pineros-Fernandez, A., Rodeheaver, G. T., Peirce-Cottler, S., . . . Campbell, C. A. (2017). Advanced Imaging Techniques for Investigation of Acellular Dermal Matrix Biointegration. PLASTIC AND RECONSTRUCTIVE SURGERY, 139(2), 395-405. doi:10.1097/PRS.0000000000002992

Murfee, W. L., & Peirce, S. M. (2017). Microfluidics Technologies and Approaches for Studying the Microcirculation. MICROCIRCULATION, 24(5). doi:10.1111/micc.12377

Olingy, C. E., San Emeterio, C. L., Ogle, M. E., Krieger, J. R., Bruce, A. C., Pfau, D. D., . . . Botchwey, E. A. (2017). Non-classical monocytes are biased progenitors of wound healing macrophages during soft tissue injury. SCIENTIFIC REPORTS, 7. doi:10.1038/s41598-017-00477-1

Henry, C. C., Martin, K. S., Ward, B. B., Handsfield, G. G., Peirce, S. M., & Blemker, S. S. (2017). Spatial and age-related changes in the microstructure of dystrophic and healthy diaphragms. PLOS ONE, 12(9). doi:10.1371/journal.pone.0183853

Martin, K. S., Kegelman, C. D., Virgilio, K. M., Passipieri, J. A., Christ, G. J., Blemker, S. S., & Peirce, S. M. (2017). In Silico and In Vivo Experiments Reveal M-CSF Injections Accelerate Regeneration Following Muscle Laceration. ANNALS OF BIOMEDICAL ENGINEERING, 45(3), 747-760. doi:10.1007/s10439-016-1707-2

Varhue, W. B., Langman, L., Kelly-Goss, M., Lataillade, M., Brayman, K. L., Peirce-Cottler, S., & Swami, N. S. (2017). Deformability-based microfluidic separation of pancreatic islets from exocrine acinar tissue for transplant applications. LAB ON A CHIP, 17(21), 3682-3691. doi:10.1039/c7lc00890b

Kelly-Goss, M. R., Ning, B., Bruce, A. C., Tavakol, D. N., Yi, D., Hu, S., . . . Peirce, S. M. (2017). Dynamic, heterogeneous endothelial Tie2 expression and capillary blood flow during microvascular remodeling. SCIENTIFIC REPORTS, 7. doi:10.1038/s41598-017-08982-z

Janes, K. A., Chandran, P. L., Ford, R. M., Lazzara, M. J., Papin, J. A., Peirce, S. M., . . . Lauffenburger, D. A. (2017). An engineering design approach to systems biology. INTEGRATIVE BIOLOGY, 9(7), 574-583. doi:10.1039/c7ib00014f

Olenczak, J. B., Seaman, S. A., Lin, K. Y., Pineros-Fernandez, A., Davis, C. E., Salopek, L. S., . . . Cottler, P. S. (2017). Effects of Collagenase Digestion and Stromal Vascular Fraction Supplementation on Volume Retention of Fat Grafts. ANNALS OF PLASTIC SURGERY, 78, S335-S342. doi:10.1097/SAP.0000000000001063


DeRosa, C. A., Seaman, S. A., Mathew, A. S., Gorick, C. M., Fan, Z., Demas, J. N., . . . Fraser, C. L. (2016). Oxygen Sensing Difluoroboron β-Diketonate Polylactide Materials with Tunable Dynamic Ranges for Wound Imaging. ACS SENSORS, 1(11), 1366-1373. doi:10.1021/acssensors.6b00533

Corliss, B. A., Azimi, M. S., Munson, J. M., Peirce, S. M., & Murfee, W. L. (2016). Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. MICROCIRCULATION, 23(2), 95-121. doi:10.1111/micc.12259

Bosetti, F., Galis, Z. S., Bynoe, M. S., Charette, M., Cipolla, M. J., del Zoppo, G. J., . . . Koroshetz, W. (2016). "Small Blood Vessels: Big Health Problems?": Scientific Recommendations of the National Institutes of Health Workshop. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 5(11). doi:10.1161/JAHA.116.004389

Chappell, J. C., Cluceru, J. G., Nesmith, J. E., Mouillesseaux, K. P., Bradley, V. B., Hartland, C. M., . . . Bautch, V. L. (2016). Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. CARDIOVASCULAR RESEARCH, 111(1), 84-93. doi:10.1093/cvr/cvw091

Bruce, A. C., Cao, Y., Henry, C., Peirce, S. M., & Laughon, K. (2016). Preclinical Assessment of Safety and Efficacy of Fluorescent Dye for Detecting Dermal Injuries (the injuries were both abrasions and incision) in a Murine Model. JOURNAL OF FORENSIC SCIENCES, 61(6), 1493-1497. doi:10.1111/1556-4029.13173

Kingsmore, K. M., Logsdon, D. K., Floyd, D. H., Peirce, S. M., Purow, B. W., & Munson, J. M. (2016). Interstitial flow differentially increases patient-derived glioblastoma stem cell invasion via CXCR4, CXCL12, and CD44-mediated mechanisms. INTEGRATIVE BIOLOGY, 8(12), 1246-1260. doi:10.1039/c6ib00167j

Keller, T. C. S., Butcher, J. T., Broseghini-Filho, G. B., Marziano, C., DeLalio, L. J., Rogers, S., . . . Isakson, B. E. (2016). Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (HbX). HYPERTENSION, 68(6), 1494-1503. doi:10.1161/HYPERTENSIONAHA.116.08171

Seaman, S. A., Tannan, S. C., Cao, Y., Peirce, S. M., & Gampper, T. J. (2016). Paradoxical Adipose Hyperplasia and Cellular Effects After Cryolipolysis: A Case Report. AESTHETIC SURGERY JOURNAL, 36(1), NP6-NP13. doi:10.1093/asj/sjv105

Seaman, S. A., Cao, Y., Campbell, C. A., & Peirce, S. M. (2016). Macrophage Recruitment and Polarization During Collateral Vessel Remodeling in Murine Adipose Tissue. MICROCIRCULATION, 23(1), 75-87. doi:10.1111/micc.12261


Seaman, S. A., Tannan, S. C., Cao, Y., Peirce, S. M., & Lin, K. Y. (2015). Differential Effects of Processing Time and Duration of Collagenase Digestion on Human and Murine Fat Grafts. PLASTIC AND RECONSTRUCTIVE SURGERY, 136(2), 189E-199E. doi:10.1097/PRS.0000000000001446

Walpole, J., Chappell, J. C., Cluceru, J. G., Mac Gabhann, F., Bautch, V. L., & Peirce, S. M. (2015). Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks. INTEGRATIVE BIOLOGY, 7(9), 987-997. doi:10.1039/c5ib00024f

Adamson, S. E., Meher, A. K., Chiu, Y. -H., Sandilos, J. K., Oberholtzer, N. P., Walker, N. N., . . . Leitinger, N. (2015). Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes. MOLECULAR METABOLISM, 4(9), 610-618. doi:10.1016/j.molmet.2015.06.009

Heuslein, J. L., Li, X., Murrell, K. P., Annex, B. H., Peirce, S. M., & Price, R. J. (2015). Computational Network Model Prediction of Hemodynamic Alterations Due to Arteriolar Rarefaction and Estimation of Skeletal Muscle Perfusion in Peripheral Arterial Disease. MICROCIRCULATION, 22(5), 360-369. doi:10.1111/micc.12203

Murfee, W. L., Sweat, R. S., Tsubota, K. -I., Mac Gabhann, F., Khismatullin, D., & Peirce, S. M. (2015). Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales. INTERFACE FOCUS, 5(2). doi:10.1098/rsfs.2014.0077

Virgilio, K. M., Martin, K. S., Peirce, S. M., & Blemker, S. S. (2015). Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. INTERFACE FOCUS, 5(2). doi:10.1098/rsfs.2014.0080

Martin, K. S., Blemker, S. S., & Peirce, S. M. (2015). Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. JOURNAL OF APPLIED PHYSIOLOGY, 118(10), 1299-1309. doi:10.1152/japplphysiol.01150.2014

Martin, K. S., Virgilio, K. M., Peirce, S. M., & Blennker, S. S. (2015). Computational Modeling of Muscle Regeneration and Adaptation to Advance Muscle Tissue Regeneration Strategies. CELLS TISSUES ORGANS, 202(3-4), 250-266. doi:10.1159/000443635

Cronk, S. M., Kelly-Goss, M. R., Ray, H. C., Mendel, T. A., Hoehn, K. L., Bruce, A. C., . . . Yates, P. A. (2015). Adipose-Derived Stem Cells From Diabetic Mice Show Impaired Vascular Stabilization in a Murine Model of Diabetic Retinopathy. STEM CELLS TRANSLATIONAL MEDICINE, 4(5), 459-467. doi:10.5966/sctm.2014-0108


Ogle, M. E., Sefcik, L. S., Awojoodu, A. O., Chiappa, N. F., Lynch, K., Peirce-Cottler, S., & Botchwey, E. A. (2014). Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning. ACTA BIOMATERIALIA, 10(11), 4704-4714. doi:10.1016/j.actbio.2014.08.007

Kelly-Goss, M. R., Sweat, R. S., Stapor, P. C., Peirce, S. M., & Murfee, W. L. (2014). Targeting Pericytes for Angiogenic Therapies. MICROCIRCULATION, 21(4), 345-357. doi:10.1111/micc.12107

Agrawal, H., Shang, H., Sattah, A. P., Yang, N., Peirce, S. M., & Katz, A. J. (2014). Human adipose-derived stromal/stem cells demonstrate short-lived persistence after implantation in both an immunocompetent and an immunocompromised murine model. Stem Cell Research & Therapy, 5. doi:10.1186/scrt532

Bruce, A. C., Kelly-Goss, M. R., Heuslein, J. L., Meisner, J. K., Price, R. J., & Peirce, S. M. (2014). Monocytes Are Recruited From Venules During Arteriogenesis in the Murine Spinotrapezius Ligation Model. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 34(9), 2012-2022. doi:10.1161/ATVBAHA.114.303399

Okutsu, M., Call, J. A., Lira, V. A., Zhang, M., Donet, J. A., French, B. A., . . . Yan, Z. (2014). Extracellular Superoxide Dismutase Ameliorates Skeletal Muscle Abnormalities, Cachexia, and Exercise Intolerance in Mice with Congestive Heart Failure. CIRCULATION-HEART FAILURE, 7(3), 519-U268. doi:10.1161/CIRCHEARTFAILURE.113.000841

Kesser, B. W., Hallman, M., Murphy, L., Tillar, M., Keeley, M., & Peirce, S. (2014). Interval vs Massed Training: How Best Do We Teach Surgery?. OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 150(1), 61-67. doi:10.1177/0194599813513712


Guendel, A. M., Martin, K. S., Cutts, J., Foley, P. L., Bailey, A. M., Mac Gabhann, F., . . . Peirce, S. M. (2013). Murine Spinotrapezius Model to Assess the Impact of Arteriolar Ligation on Microvascular Function and Remodeling. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (73). doi:10.3791/50218

Bruce, A., Meisner, J. K., Price, R. J., & Peirce, S. M. (2013). Monocyte Recruitment during Microvascular Arteriogenesis is Induced by Altered Flow and Influenced by Proximity of Venules to Collateral Arterioles. FASEB JOURNAL, 27.

Walpole, J., Papin, J. A., & Peirce, S. M. (2013). Multiscale Computational Models of Complex Biological Systems. ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 15, 15, 137-154. doi:10.1146/annurev-bioeng-071811-150104

Walpole, J., Hashambhoy, Y., Chappell, J., Bautch, V., Mac Gabhann, F., & Peirce-Cottler, S. (2013). Multiscale computational model of sprouting angiogenesis: Agent based modeling of endothelial sprout behavior in the embryoid Body. ANGIOGENESIS, 16(1), 257-258.

Awojoodu, A. O., Ogle, M. E., Sefcik, L. S., Bowers, D. T., Martin, K., Brayman, K. L., . . . Botchwey, E. (2013). Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 110(34), 13785-13790. doi:10.1073/pnas.1221309110

Mendel, T. A., Clabough, E. B. D., Kao, D. S., Demidova-Rice, T. N., Durham, J. T., Zotter, B. C., . . . Yates, P. A. (2013). Pericytes Derived from Adipose-Derived Stem Cells Protect against Retinal Vasculopathy. PLOS ONE, 8(5). doi:10.1371/journal.pone.0065691


Taylor, A. C., Mendel, T. A., Mason, K. E., Degen, K. E., Yates, P. A., & Peirce, S. M. (2012). Attenuation of EphrinB2 Reverse Signaling Decreases Vascularized Area and Preretinal Vascular Tuft Formation in the Murine Model of Oxygen-Induced Retinopathy. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 53(9), 5462-5470. doi:10.1167/iovs.11-8599

Peirce, S. M., Mac Gabhann, F., & Bautch, V. L. (2012). Integration of experimental and computational approaches to sprouting angiogenesis. CURRENT OPINION IN HEMATOLOGY, 19(3), 184-191. doi:10.1097/MOH.0b013e3283523ea6

Bruce, A. C., & Peirce, S. M. (2012). Exogenous Thrombin Delivery Promotes Collateral Capillary Arterialization and Tissue Reperfusion in the Murine Spinotrapezius Muscle Ischemia Model. MICROCIRCULATION, 19(2), 143-154. doi:10.1111/j.1549-8719.2011.00138.x

Yang, M., Stapor, P. C., Peirce, S. M., Betancourt, A. M., & Murfee, W. L. (2012). Rat Mesentery Exteriorization: A Model for Investigating the Cellular Dynamics Involved in Angiogenesis. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (63). doi:10.3791/3954

Morris, E., Kesser, B. W., Peirce-Cottler, S., & Keeley, M. (2012). Development and Validation of a Novel Ear Simulator to Teach Pneumatic Otoscopy. SIMULATION IN HEALTHCARE, 7(1), 22-26. doi:10.1097/SIH.0b013e31822eac39


Hayenga, H. N., Thorne, B. C., Peirce, S. M., & Humphrey, J. D. (2011). Ensuring Congruency in Multiscale Modeling: Towards Linking Agent Based and Continuum Biomechanical Models of Arterial Adaptation. ANNALS OF BIOMEDICAL ENGINEERING, 39(11), 2669-2682. doi:10.1007/s10439-011-0363-9

Billaud, M., Ross, J. A., Greyson, M. A., Bruce, A. C., Seaman, S. A., Heberlein, K. R., . . . Isakson, B. E. (2011). A New Method for In Vivo Visualization of Vessel Remodeling Using a Near-Infrared Dye. MICROCIRCULATION, 18(3), 163-171. doi:10.1111/j.1549-8719.2011.00085.x

Glaw, J. T., Mac Gabhann, F., & Peirce, S. M. (2011). Collateral Expansion and Capillary Arterialization in the Spinotrapezius of C57BL/6, BALB/c and NG2 Knockout Mice. FASEB JOURNAL, 25.

Hashambhoy, Y. L., Chappell, J. C., Alex, N., Peirce, S. M., Bautch, V. L., & Mac Gabhann, F. (2011). Variations in Tip Cell Proximity and sFlt1 Gradients Alter VEGF Receptor Activation in a Computational Model. FASEB JOURNAL, 25.

Thorne, B. C., Hayenga, H. N., Humphrey, J. D., & Peirce, S. M. (2011). Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent-based model. FRONTIERS IN PHYSIOLOGY, 2. doi:10.3389/fphys.2011.00020

Amos, P. J., Mulvey, C. L., Seaman, S. A., Walpole, J., Degen, K. E., Shang, H., . . . Peirce, S. M. (2011). Hypoxic culture and in vivo inflammatory environments affect the assumption of pericyte characteristics by human adipose and bone marrow progenitor cells. AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 301(6), C1378-C1388. doi:10.1152/ajpcell.00460.2010

Hashambhoy, Y. L., Chappell, J. C., Peirce, S. M., Bautch, V. L., & Gabhann, F. M. (2011). Computational modeling of interacting VEGF and soluble VEGF receptor concentration gradients. FRONTIERS IN PHYSIOLOGY, 2. doi:10.3389/fphys.2011.00062

Seaman, M. E., Peirce, S. M., & Kelly, K. (2011). Rapid Analysis of Vessel Elements (RAVE): A Tool for Studying Physiologic, Pathologic and Tumor Angiogenesis. PLOS ONE, 6(6). doi:10.1371/journal.pone.0020807

Hashambhoy, Y. L., Chappell, J. C., Alex, N., Peirce, S. M., Bautch, V. L., & Mac Gabhann, F. (2011). Simulations Predict that Competing Gradients of VEGF and sFlt1 Alter VEGF Receptor Activation. BIOPHYSICAL JOURNAL, 100(3), 164.

Benedict, K. F., Mac Gabhann, F., Amanfu, R. K., Chavali, A. K., Gianchandani, E. P., Glaw, L. S., . . . Skalak, T. C. (2011). Systems Analysis of Small Signaling Modules Relevant to Eight Human Diseases. ANNALS OF BIOMEDICAL ENGINEERING, 39(2), 621-635. doi:10.1007/s10439-010-0208-y


Sefcik, L. S., Aronin, C. E. P., Awojoodu, A. O., Shin, S. J., Mac Gabhann, F., MacDonald, T. L., . . . Botchwey, E. A. (2011). Selective Activation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes Local Microvascular Network Growth. TISSUE ENGINEERING PART A, 17(5-6), 617-629. doi:10.1089/ten.tea.2010.0404

Glaw, J. T., Skalak, T. C., & Peirce, S. M. (2010). Inhibition of Canonical Wnt Signaling Increases Microvascular Hemorrhaging and Venular Remodeling in Adult Rats. MICROCIRCULATION, 17(5), 348-357. doi:10.1111/j.1549-8719.2010.00036.x

Mac Gabhann, F., & Peirce, S. M. (2010). Collateral Capillary Arterialization following Arteriolar Ligation in Murine Skeletal Muscle. MICROCIRCULATION, 17(5), 333-347. doi:10.1111/j.1549-8719.2010.00034.x

Aronin, C. E. P., Sefcik, L. S., Tholpady, S. S., Tholpady, A., Sadik, K. W., Macdonald, T. L., . . . Botchwey, E. A. (2010). FTY720 Promotes Local Microvascular Network Formation and Regeneration of Cranial Bone Defects. TISSUE ENGINEERING PART A, 16(6), 1801-1809. doi:10.1089/ten.tea.2009.0539

Amos, P. J., Kapur, S. K., Stapor, P. C., Shang, H., Bekiranov, S., Khurgel, M., . . . Katz, A. J. (2010). Human Adipose-Derived Stromal Cells Accelerate Diabetic Wound Healing: Impact of Cell Formulation and Delivery. TISSUE ENGINEERING PART A, 16(5), 1595-1606. doi:10.1089/ten.tea.2009.0616

Taylor, A. C., Seltz, L. M., Yates, P. A., & Peirce, S. M. (2010). Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina. MICROVASCULAR RESEARCH, 79(2), 93-101. doi:10.1016/j.mvr.2010.01.006

Bruce, A., Mac Gabhann, F., & Peirce, S. M. (2010). Inter-individual Differences in Arteriolar Tree Architecture in the Mouse Spinotrapezius May Suggest a Genetic Basis for Susceptibility to Ischemic Insult. FASEB JOURNAL, 24.

Mac Gabhann, F., & Peirce, S. M. (2010). Mouse models of variability in vascular remodeling: collateral networks in spinotrapezius muscle ischemia. FASEB JOURNAL, 24.