Kenneth Walsh


Primary Appointment

, Internal Medicine


  • PhD, Biochemisty, University of California, Berkeley

Research Disciplines

Biochemistry, Cardiovascular Biology, Metabolism

Research Interests

Clonal hematopoiesis: A new mechanism of cardiovascular disease

Research Description

Hematopoietic stem cells produce multiple blood cell types and replenish themselves through a self-renewal process. As with all cells, hematopoietic stem cells accumulate somatic mutations with age. While most mutations have little or no effect on cellular fitness, some mutations will occur in âdriverâ genes that enable their positive selection. Thus, the mutant cells can outcompete neighboring wild-type cells leading to a clonal expansion. Notably, these mutant hematopoietic stem cell clones give rise to progeny immune cells that harbor the same mutant allele, and it has been shown that these mutations can functionally corrupt the circulating immune cell pool. Clonal expansions in blood cells have been found to occur in relatively healthy individuals who lack overt signs of blood cancer. This pre-cancerous condition has historically been referred to as âclonal hematopoiesisâ and more recently as âclonal hematopoiesis of indeterminate potentialâ or âage-related clonal hematopoiesisâ to distinguish it from the clonal expansions that occur in malignant blood disorders.
Clonal hematopoiesis is partcularly prevalent in the elderly where clone size can become relatively large (>20% of an individualâs white blood cells can be derived from a single clone). While clonal hematopoiesis had long been viewed as a benign feature of the aging process, recent studies have shown that it is associated with mortality due in large part to elevated cardiovascular disease risk. Studies in experimental systems have provided evidence that clonal hematopoiesis can contribute to the development of age-related diseases including atherosclerosis, heart failure and insulin resistance. Collective epidemiological and experimental studies indicate that clonal hematopoiesis is a newly recognized causal risk factor for cardiovascular disease that is as prevalent and consequential as the traditional risk factors (hyperlipidemia, hypertension, smoking and diabetes) that have been recognized for decades. Details of this new disease mechanism are being uncovered, and these findings could facilitate the development of precision medicine strategies that are tailored to account for the diverse clonal hematopoiesis patterns between individuals.
In addition to the age-related clonal hematopoiesis described above, there is a more aggressive form of this condition that is referred to as âtherapy-associated clonal hematopoeisisâ. This occurs in individuals who have been treated for cancer, and it is associated with clones that arise from mutations in DNA damage-response pathway genes that confer cellular resistance to the genotoxic stress of the cancer therapy. Recent experimental studies suggest that therapy-related clonal hematopoiesis can contribute to the medium- and long-term toxicity of anticancer agents on the heart, and this mechanism may contribute to the prevalent cardiovascular disorders that are observed in cancer survivors.
The field of clonal hematopoiesis is in its infancy. There is an incomplete understanding of the mechanisms that give rise to clonal expansions in hematopoietic cells and the health consequences of these events. The known driver genes comprise a diverse group of regulatory molecules, and it is likely that they play divergent roles in disease processes. It is also reasonable to speculate that driver genes will exhibit disease-specific actions and likely impact age-related diseases beyond the cardiovascular system. Given the large number of driver gene candidates, studies require methodologies that are far more expansive in scope than the typical âsingle gene/single diseaseâ approach. In view of these considerations, it is increasingly appreciated that the currently known pool of driver genes can only account for a portion of the clonal hematopoiesis events observed in individuals. The mechanisms that give rise to these enigmatic clones are poorly understood, yet epidemiological studies indicate that they are also associated with increased mortality. Thus, there are major unaddressed challenges and ample opportunities for new investigators to make progress in this rapidly expanding area of medical research.


  • Basic Cardiovascular Research Training Grant

Selected Publications


Cochran, J. D., & Walsh, K. (2024). Clonal Hematopoiesis: The Emergent CVD Risk Factor.. Arteriosclerosis, thrombosis, and vascular biology, 44(4), 768-771. doi:10.1161/atvbaha.123.319562

Walsh, K., Cochran, J. D., & Evans, M. A. (2024). Clonal Hematopoiesis: Getting to the Heart of the Problem With Clone Size.. JACC. Heart failure, S2213-1779(24)00037-4. doi:10.1016/j.jchf.2023.12.009

Horitani, K., Chavkin, N. W., Arai, Y., Wang, Y., Ogawa, H., Yura, Y., . . . Walsh, K. (2024). Disruption of the Uty epigenetic regulator locus in hematopoietic cells phenocopies the profibrotic attributes of Y chromosome loss in heart failure. NATURE CARDIOVASCULAR RESEARCH. doi:10.1038/s44161-024-00441-z


Cochran, J. D., Yura, Y., Thel, M. C., Doviak, H., Polizio, A. H., Arai, Y., . . . Walsh, K. (2023). Clonal Hematopoiesis in Clinical and Experimental Heart Failure With Preserved Ejection Fraction. CIRCULATION, 148(15), 1165-1178. doi:10.1161/CIRCULATIONAHA.123.064170

Cochran, J., & Walsh, K. (2023). Clonal Hematopoiesis: From Macrovascular to Microvascular Disease. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 43(5), 784-786. doi:10.1161/ATVBAHA.123.319197

Chavkin, N. W., Evans, M. A., & Walsh, K. (2023). How clonal hematopoiesis promotes inflammation at a single-cell level. NATURE CARDIOVASCULAR RESEARCH, 2(9), 801-802. doi:10.1038/s44161-023-00323-w

Sano, S., & Walsh, K. (2023). Mosaic loss of chromosome Y and cardiovascular disease. NATURE REVIEWS CARDIOLOGY. doi:10.1038/s41569-023-00976-x

Sano, S., Thel, M. C., & Walsh, K. (2023). Mosaic Loss of Y Chromosome in White Blood Cells: Its Impact on Men's Health. PHYSIOLOGY, 38(4), 161-166. doi:10.1152/physiol.00008.2023

Polizio, A. H., Park, E., & Walsh, K. (2023). Clonal Hematopoiesis: Connecting Aging and Inflammation in Atherosclerosis. CURRENT ATHEROSCLEROSIS REPORTS. doi:10.1007/s11883-023-01083-5


Chavkin, N. W., Genet, G., Poulet, M., Jeffery, E. D., Marziano, C., Genet, N., . . . Hirschi, K. K. (2022). Endothelial cell cycle state determines propensity for arterial-venous fate. NATURE COMMUNICATIONS, 13(1). doi:10.1038/s41467-022-33324-7

Evans, M. A., & Walsh, K. (2023). CLONAL HEMATOPOIESIS, SOMATIC MOSAICISM, AND AGE-ASSOCIATED DISEASE. PHYSIOLOGICAL REVIEWS, 103(1), 649-716. doi:10.1152/physrev.00004.2022

Sano, S., Horitani, K., Ogawa, H., Halvardson, J., Chavkin, N. W., Wang, Y., . . . Walsh, K. (2022). Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. SCIENCE, 377(6603), 292-297. doi:10.1126/science.abn3100

Brojakowska, A., Kour, A., Thel, M. C., Park, E., Bisserier, M., Garikipati, V. N. S., . . . Goukassian, D. A. (2022). Retrospective analysis of somatic mutations and clonal hematopoiesis in astronauts (Aug, 10.1038/s42003-022-03777-z, 2022). COMMUNICATIONS BIOLOGY, 5(1). doi:10.1038/s42003-022-04071-8

Min, K. -D., Polizio, A. H., Kour, A., Thel, M. C., & Walsh, K. (2022). Experimental ASXL1-Mediated Clonal Hematopoiesis Promotes Inflammation and Accelerates Heart Failure. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 11(19). doi:10.1161/JAHA.122.026154

Brojakowska, A., Kour, A., Thel, M. C., Park, E., Bisserier, M., Garikipati, V. N. S., . . . Goukassian, D. A. (2022). Retrospective analysis of somatic mutations and clonal hematopoiesis in astronauts. COMMUNICATIONS BIOLOGY, 5(1). doi:10.1038/s42003-022-03777-z

Walsh, K., Raghavachari, N., Kerr, C., Bick, A. G., Cummings, S. R., Druley, T., . . . Vijg, J. (2022). Clonal Hematopoiesis Analyses in Clinical, Epidemiologic, and Genetic Aging Studies to Unravel Underlying Mechanisms of Age-Related Dysfunction in Humans. FRONTIERS IN AGING, 3. doi:10.3389/fragi.2022.841796

Hayashi, Y., Shimizu, I., Yoshida, Y., Ikegami, R., Suda, M., Katsuumi, G., . . . Minamino, T. (2022). Coagulation factors promote brown adipose tissue dysfunction and abnormal systemic metabolism in obesity. ISCIENCE, 25(7). doi:10.1016/j.isci.2022.104547

Yura, Y., Cochran, J. D., & Walsh, K. (2022). Therapy-Related Clonal Hematopoiesis A New Link Between Cancer and Cardiovascular Disease. HEART FAILURE CLINICS, 18(3), 349-359. doi:10.1016/j.hfc.2022.02.010

Goukassian, D., Arakelyan, A., Brojakowska, A., Bisserier, M., Hakobyan, S., Hadri, L., . . . Garikipati, V. N. S. (2022). Space flight associated changes in astronauts' plasma-derived small extracellular vesicle microRNA: Biomarker identification. CLINICAL AND TRANSLATIONAL MEDICINE, 12(6). doi:10.1002/ctm2.845

Bisserier, M., Saffran, N., Brojakowska, A., Sebastian, A., Evans, A. C., Coleman, M. A., . . . Goukassian, D. A. (2022). Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated Risks in Astronauts. FRONTIERS IN GENETICS, 12. doi:10.3389/fgene.2021.812188

Gabisonia, K., Burjanadze, G., Woitek, F., Keles, A., Seki, M., Gorgodze, N., . . . Kasumov, T. (2022). Proteome Dynamics and Bioinformatics Reveal Major Alterations in the Turnover Rate of Functionally Related Cardiac and Plasma Proteins in a Dog Model of Congestive Heart Failure. JOURNAL OF CARDIAC FAILURE, 28(4), 588-600. doi:10.1016/j.cardfail.2021.11.011

Chavkin, N. W., Min, K. -D., & Walsh, K. (2022). Importance of clonal hematopoiesis in heart failure. TRENDS IN CARDIOVASCULAR MEDICINE, 32(4), 198-203. doi:10.1016/j.tcm.2021.04.005


Bisserier, M., Shanmughapriya, S., Rai, A. K., Gonzalez, C., Brojakowska, A., Garikipati, V. N. S., . . . Goukassian, D. A. (2021). Cell-Free Mitochondrial DNA as a Potential Biomarker for Astronauts' Health. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 10(21). doi:10.1161/JAHA.121.022055

Park, E., Evans, M. A., Doviak, H., Horitani, K., Ogawa, H., Yura, Y., . . . Walsh, K. (2021). Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (171). doi:10.3791/61875

Chavkin, N. W., Cain, S., Walsh, K., & Hirschi, K. K. (2021). Isolation of Murine Retinal Endothelial Cells for Next-Generation Sequencing. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (176). doi:10.3791/63133

Ogawa, H., Sano, S., & Walsh, K. (2021). Employing the CRISPR-Cas System for Clonal Hematopoiesis Research.. International journal of physical medicine & rehabilitation, 9(1), 582.

Sano, S., & Walsh, K. (2021). Hematopoietic JAK2V617F-mediated clonal hematopoiesis: AIM2 understand mechanisms of atherogenesis.. The journal of cardiovascular aging, 1, 5. doi:10.20517/jca.2021.06

Yura, Y., Miura-Yura, E., Katanasaka, Y., Min, K. -D., Chavkin, N., Polizio, A. H., . . . Walsh, K. (2021). The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene Ppm1d Promotes Inflammation and Non-Ischemic Heart Failure in Mice. CIRCULATION RESEARCH, 129(6), 684-698. doi:10.1161/CIRCRESAHA.121.319314

Sano, S., Wang, Y., Ogawa, H., Horitani, K., Sano, M., Polizio, A. H., . . . Walsh, K. (2021). TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. JCI INSIGHT, 6(13). doi:10.1172/jci.insight.146076

Chavkin, N. W., Sano, S., Wang, Y., Oshima, K., Ogawa, H., Horitani, K., . . . Walsh, K. (2021). The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 10(13). doi:10.1161/JAHA.120.019904

Wang, Y., Wang, X., Wang, X., Naqvi, A. A., Zhang, Q., & Zang, X. (2021). Translation and validation of the Chinese version of the general medication adherence scale (GMAS) in patients with chronic illness. CURRENT MEDICAL RESEARCH AND OPINION, 37(5), 829-837. doi:10.1080/03007995.2021.1901680

Mazzotta, C., Basu, S., Gower, A. C., Karki, S., Farb, M. G., Sroczynski, E., . . . Gokce, N. (2021). Perivascular Adipose Tissue Inflammation in Ischemic Heart Disease. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 41(3), 1239-1250. doi:10.1161/ATVBAHA.120.315865

Evans, M. A., & Walsh, K. (2021). A Single-Cell Analysis of DNMT3A-Mediated Clonal Hematopoiesis in Heart Failure. CIRCULATION RESEARCH, 128(2), 229-231. doi:10.1161/CIRCRESAHA.120.318575

Evans, M. A., Sano, S., & Walsh, K. (2021). Clonal haematopoiesis and cardiovascular disease: how low can you go?. EUROPEAN HEART JOURNAL, 42(3), 266-268. doi:10.1093/eurheartj/ehaa848

Chavkin, N. W., Walsh, K., & Hirschi, K. K. (2021). Isolation of Highly Purified and Viable Retinal Endothelial Cells. JOURNAL OF VASCULAR RESEARCH, 58(1), 49-57. doi:10.1159/000510533


Fuster, J. J., Zuriaga, M. A., Zorita, V., MacLauchlan, S., Polackal, M. N., Viana-Huete, V., . . . Walsh, K. (2020). TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. CELL REPORTS, 33(4). doi:10.1016/j.celrep.2020.108326

Min, K. D., Kour, A., Sano, S., & Walsh, K. (2020). The role of clonal haematopoiesis in cardiovascular diseases: epidemiology and experimental studies. JOURNAL OF INTERNAL MEDICINE, 288(5), 507-517. doi:10.1111/joim.13130

Shah, S. A., Cui, S. X., Waters, C. D., Sano, S., Wang, Y., Doviak, H., . . . Epstein, F. H. (2020). Nitroxide-enhanced MRI of cardiovascular oxidative stress. NMR IN BIOMEDICINE, 33(9). doi:10.1002/nbm.4359

Yura, Y., Sano, S., & Walsh, K. (2020). Clonal Hematopoiesis: A New Step Linking Inflammation to Heart Failure. JACC-BASIC TO TRANSLATIONAL SCIENCE, 5(2), 196-207. doi:10.1016/j.jacbts.2019.08.006

Wang, Y., Sano, S., Yura, Y., Ke, Z., Sano, M., Oshima, K., . . . Walsh, K. (2020). Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI INSIGHT, 5(6). doi:10.1172/jci.insight.135204

Jung, C., Evans, M. A., & Walsh, K. (2020). Genetics of age-related clonal hematopoiesis and atherosclerotic cardiovascular disease. CURRENT OPINION IN CARDIOLOGY, 35(3), 219-225. doi:10.1097/HCO.0000000000000726

Sano, S., Wang, Y., & Walsh, K. (2020). Somatic mosaicism: implication for the cardiovascular system. EUROPEAN HEART JOURNAL, 41(30), 2904-2907. doi:10.1093/eurheartj/ehz907


Evans, M. A., Sano, S., & Walsh, K. (2020). Cardiovascular Disease, Aging, and Clonal Hematopoiesis. ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 15, 2020, 15, 419-438. doi:10.1146/annurev-pathmechdis-012419-032544

Sano, S., Wang, Y., Evans, M. A., Yura, Y., Sano, M., Ogawa, H., . . . Walsh, K. (2019). Lentiviral CRISPR/Cas9-Mediated Genome Editing for the Study of Hematopoietic Cells in Disease Models. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (152). doi:10.3791/59977

Sano, S., Wang, Y., Yura, Y., Sano, M., Oshima, K., Yang, Y., . . . Walsh, K. (2019). JAK2V617F-Mediated Clonal Hematopoiesis Accelerates Pathological Remodeling in Murine Heart Failure. JACC-BASIC TO TRANSLATIONAL SCIENCE, 4(6), 684-697. doi:10.1016/j.jacbts.2019.05.013

Wang, Y., Sano, S., Oshima, K., Sano, M., Watanabe, Y., Katanasaka, Y., . . . Walsh, K. (2019). Wnt5a-Mediated Neutrophil Recruitment Has an Obligatory Role in Pressure Overload-Induced Cardiac Dysfunction. CIRCULATION, 140(6), 487-499. doi:10.1161/CIRCULATIONAHA.118.038820

Kivela, R., Hemanthakumar, K. A., Vaparanta, K., Robciuc, M., Izumiya, Y., Kidoya, H., . . . Alitalo, K. (2019). Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling. CIRCULATION, 139(22), 2570-2584. doi:10.1161/CIRCULATIONAHA.118.036099

Anzai, A., Mindur, J. E., Halle, L., Sano, S., Choi, J. L., He, S., . . . Swirski, F. K. (2019). Self-reactive CD4+ IL-3+ T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis. JOURNAL OF EXPERIMENTAL MEDICINE, 216(2), 369-383. doi:10.1084/jem.20180722


Sano, S., Wang, Y., & Walsh, K. (2019). Clonal Hematopoiesis and Its Impact on Cardiovascular Disease. CIRCULATION JOURNAL, 83(1), 2-11. doi:10.1253/circj.CJ-18-0871

Sano, S., Oshima, K., Wang, Y., Katanasaka, Y., Sano, M., & Walsh, K. (2018). CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. CIRCULATION RESEARCH, 123(3), 335-341. doi:10.1161/CIRCRESAHA.118.313225

Sano, S., Oshima, K., Wang, Y., MacLauchlan, S., Katanasaka, Y., Sano, M., . . . Walsh, K. (2018). Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through a Mechanism Involving the IL-1β/NLRP3 Inflammasome. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 71(8), 875-886. doi:10.1016/j.jacc.2017.12.037

Fuster, J. J., & Walsh, K. (2018). Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related Cardiovascular Disease. CIRCULATION RESEARCH, 122(3), 523-532. doi:10.1161/CIRCRESAHA.117.312115

Seki, M., Powers, J. C., Maruyama, S., Zuriaga, M. A., Wu, C. -L., Kurishima, C., . . . Recchia, F. A. (2018). Acute and Chronic Increases of Circulating FSTL1 Normalize Energy Substrate Metabolism in Pacing-Induced Heart Failure. CIRCULATION-HEART FAILURE, 11(1). doi:10.1161/CIRCHEARTFAILURE.117.004486

Maruyama, S., Wu, C. -L., Yoshida, S., Zhang, D., Li, P. -H., Wu, F., . . . Walsh, K. (2018). Relaxin Family Member Insulin-Like Peptide 6 Ameliorates Cardiac Fibrosis and Prevents Cardiac Remodeling in Murine Heart Failure Models. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 7(12). doi:10.1161/JAHA.117.008441


Sasi, S. P., Yan, X., Zuriaga-Herrero, M., Gee, H., Lee, J., Mehrzad, R., . . . Goukassian, D. A. (2017). Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. RADIATION RESEARCH, 188(2), 191-203. doi:10.1667/RR14667.1

Fuster, J. J., MacLauchlan, S., Zuriaga, M. A., Polackal, M. N., Ostriker, A. C., Chakraborty, R., . . . Walsh, K. (2017). Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. SCIENCE, 355(6327), 842-847. doi:10.1126/science.aag1381

Hirschi, K. K., Nicoli, S., & Walsh, K. (2017). Hematopoiesis Lineage Tree Uprooted: Every HSPC Is a Rainbow. DEVELOPMENTAL CELL, 41(1), 7-9. doi:10.1016/j.devcel.2017.03.020

Wu, C. -L., Satomi, Y., & Walsh, K. (2017). RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome. BMC GENOMICS, 18. doi:10.1186/s12864-017-3548-2

Zuriaga, M. A., Fuster, J. J., Farb, M. G., MacLauchlan, S., Breton-Romero, R., Karki, S., . . . Walsh, K. (2017). Activation of non-canonical WNT signaling in human visceral adipose tissue contributes to local and systemic inflammation. SCIENTIFIC REPORTS, 7. doi:10.1038/s41598-017-17509-5

Neppl, R. L., Wu, C. -L., & Walsh, K. (2017). lncRNA Chronos is an aging-induced inhibitor of muscle hypertrophy. JOURNAL OF CELL BIOLOGY, 216(11), 3497-3507. doi:10.1083/jcb.201612100

MacLauchlan, S., Zuriaga, M. A., Fuster, J. J., Cuda, C. M., Jonason, J., Behzadi, F., . . . Walsh, K. (2017). Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis. ARTHRITIS RESEARCH & THERAPY, 19. doi:10.1186/s13075-017-1375-0

Zuriaga, M. A., Fuster, J. J., Gokce, N., & Walsh, K. (2017). Humans and Mice Display Opposing Patterns of "Browning" Gene Expression in Visceral and Subcutaneous White Adipose Tissue Depots. FRONTIERS IN CARDIOVASCULAR MEDICINE, 4. doi:10.3389/fcvm.2017.00027

Karki, S., Ngo, D. T. M., Farb, M. G., Park, S. Y., Saggese, S. M., Hamburg, N. M., . . . Gokce, N. (2017). WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 313(1), H200-H206. doi:10.1152/ajpheart.00776.2016


Farb, M. G., Karki, S., Park, S. -Y., Saggese, S. M., Carmine, B., Hess, D. T., . . . Gokce, N. (2016). WNT5A-JNK regulation of vascular insulin resistance in human obesity. VASCULAR MEDICINE, 21(6), 489-496. doi:10.1177/1358863X16666693

Maruyama, S., Nakamura, K., Papanicolaou, K. N., Sano, S., Shimizu, I., Asaumi, Y., . . . Walsh, K. (2016). Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO MOLECULAR MEDICINE, 8(8), 949-966. doi:10.15252/emmm.201506151

Fuster, J. J., Ouchi, N., Gokce, N., & Walsh, K. (2016). Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. CIRCULATION RESEARCH, 118(11), 1786-1807. doi:10.1161/CIRCRESAHA.115.306885

Clark, A. L., Maruyama, S., Sano, S., Accorsi, A., Girgenrath, M., Walsh, K., & Naya, F. J. (2016). miR-410 and miR-495 Are Dynamically Regulated in Diverse Cardiomyopathies and Their Inhibition Attenuates Pathological Hypertrophy. PLOS ONE, 11(3). doi:10.1371/journal.pone.0151515

Breton-Romero, R., Feng, B., Holbrook, M., Farb, M. G., Fetterman, J. L., Linder, E. A., . . . Hamburg, N. M. (2016). Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 36(3), 561-569. doi:10.1161/ATVBAHA.115.306578

Miller, E. J., Calamaras, T., Elezaby, A., Sverdlov, A., Qin, F., Luptak, I., . . . Colucci, W. S. (2016). Partial Liver Kinase B1 (LKB1) Deficiency Promotes Diastolic Dysfunction, De Novo Systolic Dysfunction, Apoptosis, and Mitochondrial Dysfunction With Dietary Metabolic Challenge. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 5(1). doi:10.1161/JAHA.115.002277

Cohen, Y., Dafni, H., Avni, R., Fellus, L., Bochner, F., Rotkopf, R., . . . Neeman, M. (2016). Genetic and Pharmacological Modulation of Akt1 for Improving Ovarian Graft Revascularization in a Mouse Model. BIOLOGY OF REPRODUCTION, 94(1). doi:10.1095/biolreprod.115.131987

Lee, R. T., & Walsh, K. (2016). The Future of Cardiovascular Regenerative Medicine. CIRCULATION, 133(25), 2618-2625. doi:10.1161/CIRCULATIONAHA.115.019214


Nakamura, K., Sano, S., Fuster, J. J., Kikuchi, R., Shimizu, I., Ohshima, K., . . . Walsh, K. (2016). Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury. JOURNAL OF BIOLOGICAL CHEMISTRY, 291(6), 2566-2575. doi:10.1074/jbc.M115.693937

Shah, D., Romero, F., Zhu, Y., Duong, M., Sun, J., Walsh, K., & Summer, R. (2015). C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury. JOURNAL OF BIOLOGICAL CHEMISTRY, 290(49), 29642-29651. doi:10.1074/jbc.M115.690784

Wei, K., Serpooshan, V., Hurtado, C., Diez-Cunado, M., Zhao, M., Maruyama, S., . . . Ruiz-Lozano, P. (2015). Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. NATURE, 525(7570), 479-+. doi:10.1038/nature15372

Romero, F., Shah, D., Duong, M., Penn, R. B., Fessler, M. B., Madenspacher, J., . . . Summer, R. (2015). A Pneumocyte-Macrophage Paracrine Lipid Axis Drives the Lung toward Fibrosis. AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 53(1), 74-86. doi:10.1165/rcmb.2014-0343OC

Fuster, J. J., Zuriaga, M. A., Doan, T. -M. N., Farb, M. G., Aprahamian, T., Yamaguchi, T. P., . . . Walsh, K. (2015). Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion. DIABETES, 64(4), 1235-1248. doi:10.2337/db14-1164

Hayakawa, S., Ohashi, K., Shibata, R., Kataoka, Y., Miyabe, M., Enomoto, T., . . . Ouchi, N. (2015). Cardiac Myocyte-Derived Follistatin-Like 1 Prevents Renal Injury in a Subtotal Nephrectomy Model. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 26(3), 636-646. doi:10.1681/ASN.2014020210

Shah, D., Romero, F., Duong, M., Wang, N., Paudyal, B., Suratt, B. T., . . . Summer, R. (2015). Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury (Retracted Article). SCIENTIFIC REPORTS, 5. doi:10.1038/srep11362

Kambara, T., Shibata, R., Ohashi, K., Matsuo, K., Hiramatsu-Ito, M., Enomoto, T., . . . Ouchi, N. (2015). C1q/Tumor Necrosis Factor-Related Protein 9 Protects against Acute Myocardial Injury through an Adiponectin Receptor I-AMPK-Dependent Mechanism. MOLECULAR AND CELLULAR BIOLOGY, 35(12), 2173-2185. doi:10.1128/MCB.01518-14

Shimizu, I., & Walsh, K. (2015). The Whitening of Brown Fat and Its Implications for Weight Management in Obesity. CURRENT OBESITY REPORTS, 4(2), 224-229. doi:10.1007/s13679-015-0157-8


Kikuchi, R., Nakamura, K., MacLauchlan, S., Doan, T. -M. N., Shimizu, I., Fuster, J. J., . . . Walsh, K. (2014). An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. NATURE MEDICINE, 20(12), 1464-1471. doi:10.1038/nm.3703

Cheng, K. -K., Akasaki, Y., Lecommandeur, E., Lindsay, R. T., Murfitt, S., Walsh, K., & Griffin, J. L. (2015). Metabolomic Analysis of Akt1-Mediated Muscle Hypertrophy in Models of Diet-Induced Obesity and Age-Related Fat Accumulation. JOURNAL OF PROTEOME RESEARCH, 14(1), 342-352. doi:10.1021/pr500756u

Dorn, G. W. I. I., Song, M., & Walsh, K. (2015). Functional implications of mitofusin 2-mediated mitochondrial-SR tethering. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 78, 123-128. doi:10.1016/j.yjmcc.2014.09.015

Ngo, D. T. M., Farb, M. G., Kikuchi, R., Karki, S., Tiwari, S., Bigornia, S. J., . . . Gokce, N. (2014). Antiangiogenic Actions of Vascular Endothelial Growth Factor-A165b, an Inhibitory Isoform of Vascular Endothelial Growth Factor-A, in Human Obesity. CIRCULATION, 130(13), 1072-1080. doi:10.1161/CIRCULATIONAHA.113.008171

Yoshida, S., Fuster, J. J., & Walsh, K. (2014). Adiponectin attenuates abdominal aortic aneurysm formation in hyperlipidemic mice. ATHEROSCLEROSIS, 235(2), 339-346. doi:10.1016/j.atherosclerosis.2014.05.923

Fuster, J. J., & Walsh, K. (2014). The Good, the Bad, and the Ugly of interleukin-6 signaling. EMBO JOURNAL, 33(13), 1425-1427. doi:10.15252/embj.201488856

Shimizu, I., Aprahamian, T., Kikuchi, R., Shimizu, A., Papanicolaou, K. N., MacLauchlan, S., . . . Walsh, K. (2014). Vascular rarefaction mediates whitening of brown fat in obesity. JOURNAL OF CLINICAL INVESTIGATION, 124(5), 2099-2112. doi:10.1172/JCI71643

Sasi, S. P., Song, J., Park, D., Enderling, H., McDonald, J. T., Gee, H., . . . Goukassian, D. A. (2014). TNF-TNFR2/p75 Signaling Inhibits Early and Increases Delayed Nontargeted Effects in Bone Marrow-derived Endothelial Progenitor Cells. JOURNAL OF BIOLOGICAL CHEMISTRY, 289(20), 14178-14193. doi:10.1074/jbc.M114.567743

Kwon, B., Kumar, P., Lee, H. -K., Zeng, L., Walsh, K., Fu, Q., . . . Querfurth, H. W. (2014). Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. HUMAN MOLECULAR GENETICS, 23(14), 3681-3694. doi:10.1093/hmg/ddu077

Murdoch, C. E., Shuler, M., Haeussler, D. J. F., Kikuchi, R., Bearelly, P., Han, J., . . . Matsui, R. (2014). Glutaredoxin-1 Up-regulation Induces Soluble Vascular Endothelial Growth Factor Receptor 1, Attenuating Post-ischemia Limb Revascularization. JOURNAL OF BIOLOGICAL CHEMISTRY, 289(12), 8633-8644. doi:10.1074/jbc.M113.517219

Akasaki, Y., Ouchi, N., Izumiya, Y., Bernardo, B. L., LeBrasseur, N. K., & Walsh, K. (2014). Glycolytic fast-twitch muscle fiber restoration counters adverse age-related changes in body composition and metabolism. AGING CELL, 13(1), 80-91. doi:10.1111/acel.12153

Farb, M. G., Tiwari, S., Karki, S., Ngo, D. T. M., Carmine, B., Hess, D. T., . . . Gokce, N. (2014). Cyclooxygenase Inhibition Improves Endothelial Vasomotor Dysfunction of Visceral Adipose Arterioles in Human Obesity. OBESITY, 22(2), 349-355. doi:10.1002/oby.20505

Hanatani, S., Izumiya, Y., Araki, S., Rokutanda, T., Kimura, Y., Walsh, K., & Ogawa, H. (2014). Akt1-Mediated Fast/Glycolytic Skeletal Muscle Growth Attenuates Renal Damage in Experimental Kidney Disease. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 25(12), 2800-2811. doi:10.1681/ASN.2013091025

Miyabe, M., Ohashi, K., Shibata, R., Uemura, Y., Ogura, Y., Yuasa, D., . . . Ouchi, N. (2014). Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury. CARDIOVASCULAR RESEARCH, 103(1), 111-120. doi:10.1093/cvr/cvu105

Parker-Duffen, J. L., Nakamura, K., Silver, M., Zuriaga, M. A., MacLauchlan, S., Aprahamian, T. R., & Walsh, K. (2014). Divergent Roles for Adiponectin Receptor 1 (AdipoR1) and AdipoR2 in Mediating Revascularization and Metabolic Dysfunction in Vivo. JOURNAL OF BIOLOGICAL CHEMISTRY, 289(23), 16200-16213. doi:10.1074/jbc.M114.548115

Yan, X., Sasi, S. P., Gee, H., Lee, J., Yang, Y., Mehrzad, R., . . . Goukassian, D. A. (2014). Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation. PLOS ONE, 9(10). doi:10.1371/journal.pone.0110269

Tan, P. H., Tyrrell, H. E. J., Gao, L., Xu, D., Quan, J., Gill, D., . . . Xue, S. -A. (2014). Adiponectin Receptor Signaling on Dendritic Cells Blunts Antitumor Immunity. CANCER RESEARCH, 74(20), 5711-5722. doi:10.1158/0008-5472.CAN-13-1397

Zeng, L., Maruyama, S., Nakamura, K., Parker-Duffen, J. L., Adham, I. M., Zhong, X., . . . Walsh, K. (2014). The injury-induced myokine insulin-like 6 is protective in experimental autoimmune myositis. SKELETAL MUSCLE, 4. doi:10.1186/2044-5040-4-16


Nakamura, K., Fuster, J. J., & Walsh, K. (2014). Adipokines: A link between obesity and cardiovascular disease. JOURNAL OF CARDIOLOGY, 63(3-4), 250-259. doi:10.1016/j.jjcc.2013.11.006

Parker-Duffen, J. L., & Walsh, K. (2014). Cardiometabolic effects of adiponectin. BEST PRACTICE & RESEARCH CLINICAL ENDOCRINOLOGY & METABOLISM, 28(1), 81-91. doi:10.1016/j.beem.2013.09.001

Shimizu, I., & Walsh, K. (2013). Vascular remodeling mediated by Angptl2 produced from perivascular adipose tissue. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 59, 176-178. doi:10.1016/j.yjmcc.2013.03.009

Li, Y., Wong, K., Walsh, K., Gao, B., & Zang, M. (2013). Retinoic Acid Receptor β Stimulates Hepatic Induction of Fibroblast Growth Factor 21 to Promote Fatty Acid Oxidation and Control Whole-body Energy Homeostasis in Mice. JOURNAL OF BIOLOGICAL CHEMISTRY, 288(15), 10490-10504. doi:10.1074/jbc.M112.429852

Yoshida, S., Aihara, K. -I., Ikeda, Y., Sumitomo-Ueda, Y., Uemoto, R., Ishikawa, K., . . . Matsumoto, T. (2013). Androgen Receptor Promotes Sex-Independent Angiogenesis in Response to Ischemia and Is Required for Activation of Vascular Endothelial Growth Factor Receptor Signaling. CIRCULATION, 128(1), 60-71. doi:10.1161/CIRCULATIONAHA.113.001533

Kasumov, T., Dabkowski, E. R., Shekar, K. C., Li, L., Ribeiro, R. F. J., Walsh, K., . . . Stanley, W. C. (2013). Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 304(9), H1201-H1214. doi:10.1152/ajpheart.00933.2012

Uchida, S., De Gaspari, P., Kostin, S., Jenniches, K., Kilic, A., Izumiya, Y., . . . Braun, T. (2013). Sca1-Derived Cells Are a Source of Myocardial Renewal in the Murine Adult Heart. STEM CELL REPORTS, 1(5), 397-410. doi:10.1016/j.stemcr.2013.09.004

Zhu, Y., Pereira, R. O., O'Neill, B. T., Riehle, C., Ilkun, O., Wende, A. R., . . . Abel, E. D. (2013). Cardiac PI3K-Akt Impairs Insulin-Stimulated Glucose Uptake Independent of mTORC1 and GLUT4 Translocation. MOLECULAR ENDOCRINOLOGY, 27(1), 172-184. doi:10.1210/me.2012-1210

Fetalvero, K. M., Yu, Y., Goetschkes, M., Liang, G., Valdez, R. A., Gould, T., . . . Murphy, L. O. (2013). Defective Autophagy and mTORC1 Signaling in Myotubularin Null Mice. MOLECULAR AND CELLULAR BIOLOGY, 33(1), 98-110. doi:10.1128/MCB.01075-12

Parker-Duffen, J. L., Nakamura, K., Silver, M., Kikuchi, R., Tigges, U., Yoshida, S., . . . Walsh, K. (2013). T-cadherin Is Essential for Adiponectin-mediated Revascularization. JOURNAL OF BIOLOGICAL CHEMISTRY, 288(34), 24886-24897. doi:10.1074/jbc.M113.454835


Ogura, Y., Ouchi, N., Ohashi, K., Shibata, R., Kataoka, Y., Kambara, T., . . . Murohara, T. (2012). Therapeutic Impact of Follistatin-Like 1 on Myocardial Ischemic Injury in Preclinical Models. CIRCULATION, 126(14), 1728-+. doi:10.1161/CIRCULATIONAHA.112.115089

Naito, A. T., Sumida, T., Nomura, S., Liu, M. -L., Higo, T., Nakagawa, A., . . . Komuro, I. (2012). Complement C1q Activates Canonical Wnt Signaling and Promotes Aging-Related Phenotypes. CELL, 149(6), 1298-1313. doi:10.1016/j.cell.2012.03.047

Ouchi, N., & Walsh, K. (2012). Cardiovascular and Metabolic Regulation by the Adiponectin/C1q/Tumor Necrosis Factor-Related Protein Family of Proteins. CIRCULATION, 125(25), 3066-3068. doi:10.1161/CIRCULATIONAHA.112.114181

Papanicolaou, K. N., Phillippo, M. M., & Walsh, K. (2012). Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 303(3), H243-H255. doi:10.1152/ajpheart.00185.2012

Lee, H. -K., Rocnik, E., Fu, Q., Kwon, B., Zeng, L., Walsh, K., & Querfurth, H. (2012). Foxo/Atrogin induction in human and experimental myositis. NEUROBIOLOGY OF DISEASE, 46(2), 463-475. doi:10.1016/j.nbd.2012.02.011

Wanninger, J., Liebisch, G., Schmitz, G., Bauer, S., Eisinger, K., Neumeier, M., . . . Buechler, C. (2013). Lipidomic analysis of the liver identifies changes of major and minor lipid species in adiponectin deficient mice. EXPERIMENTAL AND MOLECULAR PATHOLOGY, 94(2), 412-417. doi:10.1016/j.yexmp.2012.03.008

Panse, K. D., Felkin, L. E., Lopez-Olaneta, M. M., Gomez-Salinero, J., Villalba, M., Munoz, L., . . . Lara-Pezzi, E. (2012). Follistatin-Like 3 Mediates Paracrine Fibroblast Activation by Cardiomyocytes. JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 5(6), 814-826. doi:10.1007/s12265-012-9400-9

Araki, S., Izumiya, Y., Hanatani, S., Rokutanda, T., Usuku, H., Akasaki, Y., . . . Ogawa, H. (2012). Akt1-Mediated Skeletal Muscle Growth Attenuates Cardiac Dysfunction and Remodeling After Experimental Myocardial Infarction. CIRCULATION-HEART FAILURE, 5(1), 116-U268. doi:10.1161/CIRCHEARTFAILURE.111.964783

Widera, C., Giannitsis, E., Kempf, T., Korf-Klingebiel, M., Fiedler, B., Sharma, S., . . . Wollert, K. C. (2012). Identification of Follistatin-Like 1 by Expression Cloning as an Activator of the Growth Differentiation Factor 15 Gene and a Prognostic Biomarker in Acute Coronary Syndrome. CLINICAL CHEMISTRY, 58(8), 1233-1241. doi:10.1373/clinchem.2012.182816

Wanninger, J., Bauer, S., Eisinger, K., Weiss, T. S., Walter, R., Hellerbrand, C., . . . Buechler, C. (2012). Adiponectin upregulates hepatocyte CMKLR1 which is reduced in human fatty liver (vol 349, pg 248, 2012). MOLECULAR AND CELLULAR ENDOCRINOLOGY, 355(1), 190. doi:10.1016/j.mce.2012.02.014

Konter, J. M., Parker, J. L., Baez, E., Li, S. Z., Ranscht, B., Denzel, M., . . . Summer, R. S. (2012). Adiponectin Attenuates Lipopolysaccharide-Induced Acute Lung Injury through Suppression of Endothelial Cell Activation. JOURNAL OF IMMUNOLOGY, 188(2), 854-863. doi:10.4049/jimmunol.1100426

Shiojima, I., Schiekofer, S., Schneider, J. G., Belisle, K., Sato, K., Andrassy, M., . . . Walsh, K. (2012). Short-Term Akt Activation in Cardiac Muscle Cells Improves Contractile Function in Failing Hearts. AMERICAN JOURNAL OF PATHOLOGY, 181(6), 1969-1976. doi:10.1016/j.ajpath.2012.08.020

Papanicolaou, K. N., Kikuchi, R., Ngoh, G. A., Coughlan, K. A., Dominguez, I., Stanley, W. C., & Walsh, K. (2012). Mitofusins 1 and 2 Are Essential for Postnatal Metabolic Remodeling in Heart. CIRCULATION RESEARCH, 111(8), 1012-+. doi:10.1161/CIRCRESAHA.112.274142

Ngoh, G. A., Papanicolaou, K. N., & Walsh, K. (2012). Loss of Mitofusin 2 Promotes Endoplasmic Reticulum Stress. JOURNAL OF BIOLOGICAL CHEMISTRY, 287(24), 20321-20332. doi:10.1074/jbc.M112.359174

Qin, F., Siwik, D. A., Luptak, I., Hou, X., Wang, L., Higuchi, A., . . . Colucci, W. S. (2012). The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice. CIRCULATION, 125(14), 1757-U127. doi:10.1161/CIRCULATIONAHA.111.067801

Shimano, M., Ouchi, N., & Walsh, K. (2012). Cardiokines Recent Progress in Elucidating the Cardiac Secretome. CIRCULATION, 126(21), E327-E332. doi:10.1161/CIRCULATIONAHA.112.150656


Wanninger, J., Bauer, S., Eisinger, K., Weiss, T. S., Walter, R., Hellerbrand, C., . . . Buechler, C. (2012). Adiponectin upregulates hepatocyte CMKLR1 which is reduced in human fatty liver. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 349(2), 248-254. doi:10.1016/j.mce.2011.10.032

Papanicolaou, K. N., Ngoh, G. A., Dabkowski, E. R., O'Connell, K. A., Ribeiro, R. F. J., Stanley, W. C., & Walsh, K. (2012). Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 302(1), H167-H179. doi:10.1152/ajpheart.00833.2011

Lugus, J. J., Ngoh, G. A., Bachschmid, M. M., & Walsh, K. (2011). Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 51(6), 885-893. doi:10.1016/j.yjmcc.2011.07.023

Leduc, M. S., Lyons, M., Darvishi, K., Walsh, K., Sheehan, S., Amend, S., . . . Korstanje, R. (2011). The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol. JOURNAL OF LIPID RESEARCH, 52(6), 1139-1149. doi:10.1194/jlr.M009175

Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. NATURE REVIEWS IMMUNOLOGY, 11(2), 85-97. doi:10.1038/nri2921

Papanicolaou, K. N., Khairallah, R. J., Ngoh, G. A., Chikando, A., Luptak, I., O'Shea, K. M., . . . Walsh, K. (2011). Mitofusin-2 Maintains Mitochondrial Structure and Contributes to Stress-Induced Permeability Transition in Cardiac Myocytes. MOLECULAR AND CELLULAR BIOLOGY, 31(6), 1309-1328. doi:10.1128/MCB.00911-10

Jadhav, R., Dodd, T., Smith, E., Bailey, E., DeLucia, A. L., Russell, J. C., . . . Rocic, P. (2011). Angiotensin type I receptor blockade in conjunction with enhanced Akt activation restores coronary collateral growth in the metabolic syndrome. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 300(5), H1938-H1949. doi:10.1152/ajpheart.00282.2010

Maruyama, S., Shibata, R., Ohashi, K., Ohashi, T., Daida, H., Walsh, K., . . . Ouchi, N. (2011). Adiponectin Ameliorates Doxorubicin-induced Cardiotoxicity through Akt Protein-dependent Mechanism. JOURNAL OF BIOLOGICAL CHEMISTRY, 286(37), 32790-32800. doi:10.1074/jbc.M111.245985

Enomoto, T., Ohashi, K., Shibata, R., Higuchi, A., Maruyama, S., Izumiya, Y., . . . Ouchi, N. (2011). Adipolin/C1qdc2/CTRP12 Protein Functions as an Adipokine That Improves Glucose Metabolism. JOURNAL OF BIOLOGICAL CHEMISTRY, 286(40), 34552-34558. doi:10.1074/jbc.M111.277319

Craige, S. M., Chen, K., Pei, Y., Li, C., Huang, X., Chen, C., . . . Keaney, J. F. J. (2011). NADPH Oxidase 4 Promotes Endothelial Angiogenesis Through Endothelial Nitric Oxide Synthase Activation. CIRCULATION, 124(6), 731-U193. doi:10.1161/CIRCULATIONAHA.111.030775

El-Armouche, A., Ouchi, N., Tanaka, K., Doros, G., Wittkoepper, K., Schulze, T., . . . Sam, F. (2011). Follistatin-Like 1 in Chronic Systolic Heart Failure A Marker of Left Ventricular Remodeling. CIRCULATION-HEART FAILURE, 4(5), 621-627. doi:10.1161/CIRCHEARTFAILURE.110.960625

Shimano, M., Ouchi, N., Nakamura, K., van Wijk, B., Ohashi, K., Asaumi, Y., . . . Walsh, K. (2011). Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 108(43), E899-E906. doi:10.1073/pnas.1108559108

Li, Y., Xu, S., Giles, A., Nakamura, K., Lee, J. W., Hou, X., . . . Zang, M. (2011). Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB JOURNAL, 25(5), 1664-1679. doi:10.1096/fj.10-173492

Shimano, M., Ouchi, N., Nakamura, K., Oshima, Y., Higuchi, A., Pimentel, D. R., . . . Walsh, K. (2011). Cardiac Myocyte-specific Ablation of Follistatin-like 3 Attenuates Stress-induced Myocardial Hypertrophy. JOURNAL OF BIOLOGICAL CHEMISTRY, 286(11), 9840-9848. doi:10.1074/jbc.M110.197079

Kim, M. H., Kay, D. I., Rudra, R. T., Chen, B. M., Hsu, N., Izumiya, Y., . . . Crosbie, R. H. (2011). Myogenic Akt signaling attenuates muscular degeneration, promotes myofiber regeneration and improves muscle function in dystrophin-deficient mdx mice. HUMAN MOLECULAR GENETICS, 20(7), 1324-1338. doi:10.1093/hmg/ddr015

Summer, R., Walsh, K., & Medoff, B. D. (2011). Obesity and pulmonary arterial hypertension: Is adiponectin the molecular link between these conditions?. Pulmonary circulation, 1(4), 440-447. doi:10.4103/2045-8932.93542


Ikeda, H., Shiojima, I., Oka, T., Yoshida, M., Maemura, K., Walsh, K., . . . Komuro, I. (2011). Increased Akt-mTOR Signaling in Lung Epithelium Is Associated with Respiratory Distress Syndrome in Mice. JOURNAL OF BACTERIOLOGY, 193(5), 1054-U1065. doi:10.1128/MCB.00732-10

Walkey, A. J., Rice, T. W., Konter, J., Ouchi, N., Shibata, R., Walsh, K., . . . Summer, R. (2010). Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. CRITICAL CARE MEDICINE, 38(12), 2329-2334. doi:10.1097/CCM.0b013e3181fa0561

Zeng, L., Akasaki, Y., Sato, K., Ouchi, N., Izumiya, Y., & Walsh, K. (2010). Insulin-like 6 Is Induced by Muscle Injury and Functions as a Regenerative Factor. JOURNAL OF BIOLOGICAL CHEMISTRY, 285(46), 36060-36069. doi:10.1074/jbc.M110.160879

Ouchi, N., Higuchi, A., Ohashi, K., Oshima, Y., Gokce, N., Shibata, R., . . . Walsh, K. (2010). Sfrp5 Is an Anti-Inflammatory Adipokine That Modulates Metabolic Dysfunction in Obesity. SCIENCE, 329(5990), 454-457. doi:10.1126/science.1188280

Papanicolaou, K. N., Streicher, J. M., Ishikawa, T. -O., Herschman, H., Wang, Y., & Walsh, K. (2010). Preserved heart function and maintained response to cardiac stresses in a genetic model of cardiomyocyte-targeted deficiency of cyclooxygenase-2. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 49(2), 196-209. doi:10.1016/j.yjmcc.2010.04.002

Shimano, M., Ouchi, N., Shibata, R., Ohashi, K., Pimentel, D. R., Murohara, T., & Walsh, K. (2010). Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 49(2), 210-220. doi:10.1016/j.yjmcc.2010.02.021

Biolo, A., Shibata, R., Ouchi, N., Kihara, S., Sonoda, M., Walsh, K., & Sam, F. (2010). Determinants of Adiponectin Levels in Patients With Chronic Systolic Heart Failure. AMERICAN JOURNAL OF CARDIOLOGY, 105(8), 1147-1152. doi:10.1016/j.amjcard.2009.12.015

Ouchi, N., Asaumi, Y., Ohashi, K., Higuchi, A., Sono-Romanelli, S., Oshima, Y., & Walsh, K. (2010). DIP2A Functions as a FSTL1 Receptor. JOURNAL OF BIOLOGICAL CHEMISTRY, 285(10), 7127-7134. doi:10.1074/jbc.M109.069468

Dolinsky, V. W., Morton, J. S., Oka, T., Robillard-Frayne, I., Bagdan, M., Lopaschuk, G. D., . . . Dyck, J. R. B. (2010). Calorie Restriction Prevents Hypertension and Cardiac Hypertrophy in the Spontaneously Hypertensive Rat. HYPERTENSION, 56(3), 412-U155. doi:10.1161/HYPERTENSIONAHA.110.154732

Ikeda, Y., Aihara, K. -I., Akaike, M., Sato, T., Ishikawa, K., Ise, T., . . . Matsumoto, T. (2010). Androgen Receptor Counteracts Doxorubicin-Induced Cardiotoxicity in Male Mice. MOLECULAR ENDOCRINOLOGY, 24(7), 1338-1348. doi:10.1210/me.2009-0402

Ritchie, S. A., Kohlhaas, C. F., Boyd, A. R., Yalla, K. C., Walsh, K., Connell, J. M. C., & Salt, I. P. (2010). Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis. BIOCHEMICAL JOURNAL, 426, 85-90. doi:10.1042/BJ20091580

O'Shea, K. M., Chess, D. J., Khairallah, R. J., Rastogi, S., Hecker, P. A., Sabbah, H. N., . . . Stanley, W. C. (2010). Effects of adiponectin deficiency on structural and metabolic remodeling in mice subjected to pressure overload. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 298(6), H1639-H1645. doi:10.1152/ajpheart.00957.2009

Denzel, M. S., Scimia, M. -C., Zumstein, P. M., Walsh, K., Ruiz-Lozano, P., & Ranscht, B. (2010). T-cadherin is critical for adiponectin-mediated cardioprotection in mice. JOURNAL OF CLINICAL INVESTIGATION, 120(12), 4342-4352. doi:10.1172/JCI43464

Galasso, G., De Rosa, R., Piscione, F., Iaccarino, G., Vosa, C., Sorriento, D., . . . Chiariello, M. (2010). Myocardial expression of FOXO3a-Atrogin-1 pathway in human heart failure. EUROPEAN JOURNAL OF HEART FAILURE, 12(12), 1290-1296. doi:10.1093/eurjhf/hfq102

O'Shea, K. M., Chess, D. J., Khairallah, R. J., Hecker, P. A., Lei, B., Walsh, K., . . . Stanley, W. C. (2010). Ï-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin. LIPIDS IN HEALTH AND DISEASE, 9. doi:10.1186/1476-511X-9-95

Kondo, K., Shibata, R., Unno, K., Shimano, M., Ishii, M., Kito, T., . . . Murohara, T. (2010). Impact of a Single Intracoronary Administration of Adiponectin on Myocardial Ischemia/Reperfusion Injury in a Pig Model. CIRCULATION-CARDIOVASCULAR INTERVENTIONS, 3(2), 166-U111. doi:10.1161/CIRCINTERVENTIONS.109.872044

Ohashi, K., Parker, J. L., Ouchi, N., Higuchi, A., Vita, J. A., Gokce, N., . . . Walsh, K. (2010). Adiponectin Promotes Macrophage Polarization toward an Anti-inflammatory Phenotype. JOURNAL OF BIOLOGICAL CHEMISTRY, 285(9), 6153-6160. doi:10.1074/jbc.M109.088708

Higuchi, A., Ohashi, K., Shibata, R., Sono-Romanelli, S., Walsh, K., & Ouchi, N. (2010). Thiazolidinediones Reduce Pathological Neovascularization in Ischemic Retina Via an Adiponectin-Dependent Mechanism. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 30(1), 46-53. doi:10.1161/ATVBAHA.109.198465

Sam, F., Duhaney, T. -A. S., Sato, K., Wilson, R. M., Ohashi, K., Sono-Romanelli, S., . . . Ouchi, N. (2010). Adiponectin Deficiency, Diastolic Dysfunction, and Diastolic Heart Failure. ENDOCRINOLOGY, 151(1), 322-331. doi:10.1210/en.2009-0806

Ohashi, K., Ouchi, N., Higuchi, A., Shaw, R. J., & Walsh, K. (2010). LKB1 Deficiency in Tie2-Cre-expressing Cells Impairs Ischemia-induced Angiogenesis. JOURNAL OF BIOLOGICAL CHEMISTRY, 285(29), 22291-22298. doi:10.1074/jbc.M110.123794

McCalmon, S. A., Desjardins, D. M., Ahmad, S., Davidoff, K. S., Snyder, C. M., Sato, K., . . . Naya, F. J. (2010). Modulation of Angiotensin II-Mediated Cardiac Remodeling by the MEF2A Target Gene Xirp2. CIRCULATION RESEARCH, 106(5), 952-U261. doi:10.1161/CIRCRESAHA.109.209007