Weibin Shi
- Phone: 434-243-9420
- Fax: 434-924-9435
Primary Appointment
Professor, Radiology and Medical Imaging
Education
- PhD, Pathology, McGill University
Research Disciplines
Genetics, Molecular Biology
Research Interests
Molecular and genetic determinants of atherosclerosis and cardiometabolic disorders.
Research Description
Diabetic patients have up to 4-fold increased risk for having incident cardiovascular events. We have mapped multiple loci for atherosclerosis that are overlapping precisely with loci for plasma glucose. We are testing the hypothesis that there exist genetic connections between the two important diseases.
Development of effective imaging probes targeting macrophages
Macrophages are involved in the development and progression of many important chronic inflammatory diseases, including atherosclerosis, asthma, inflammatory bowel disease, and type 2 diabetes. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is currently used to diagnose inflammatory diseases involving macrophages, but accurate quantitation of macrophages has been difficult due to background uptake by other cell types. We are testing more specific macrophage imaging agents that have little or no background binding to other cell types. The formyl peptide receptors (FPRs) are abundantly expressed on the surface of macrophages. We have successfully used a FPR receptor antagonist to detect macrophages in the pancreas of mice. We are in the process of designing, synthesizing and evaluating imaging gents that can be applied to humans.
Personal Statement
Training
- Basic Cardiovascular Research Training Grant
Selected Publications
2023
Torikai, H., Chen, M. -H., Jin, L., He, J., Angle, J. F., & Shi, W. (2023). Atherogenesis in Apoe-/- and Ldlr-/- Mice with a Genetically Resistant Background. CELLS, 12(9). doi:10.3390/cells12091255
2022
Abramson, A. M., Shi, L. J., Lee, R. N., Chen, M. -H., & Shi, W. (2022). Phenotypic and Genetic Evidence for a More Prominent Role of Blood Glucose than Cholesterol in Atherosclerosis of Hyperlipidemic Mice. CELLS, 11(17). doi:10.3390/cells11172669
Shi, W., Li, J., Bao, K., Chen, M. -H., & Liu, Z. (2022). Ldlr-Deficient Mice with an Atherosclerosis-Resistant Background Develop Severe Hyperglycemia and Type 2 Diabetes on a Western-Type Diet. BIOMEDICINES, 10(6). doi:10.3390/biomedicines10061429
Shi, L. J., Tang, X., He, J., & Shi, W. (2022). Genetic Evidence for a Causal Relationship between Hyperlipidemia and Type 2 Diabetes in Mice. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 23(11). doi:10.3390/ijms23116184
Li, J., Taylor, A. M., Manichaikul, A., Angle, J. F., & Shi, W. (2022). Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis. CELLS, 11(7). doi:10.3390/cells11071107
Shi, L. J., Chagari, B., An, A., Chen, M. -H., Bao, Y., & Shi, W. (2022). Genetic Connection between Hyperglycemia and Carotid Atherosclerosis in Hyperlipidemic Mice. GENES, 13(3). doi:10.3390/genes13030510
2021
Grainger, A. T., Pilar, N., Li, J., Chen, M. -H., Abramson, A. M., Becker-Pauly, C., & Shi, W. (2021). Identification of Mep1a as a susceptibility gene for atherosclerosis in mice. GENETICS, 219(4). doi:10.1093/genetics/iyab160
Shi, L. J., Tang, X., He, J., & Shi, W. (2021). Y Hyperlipidemia Influences the Accuracy of Glucometer-Measured Blood Glucose Concentrations in Genetically Diverse Mice. AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 362(3), 297-302. Retrieved from https://www.webofscience.com/
Zhao, J., Huangfu, C., Chang, Z., Zhou, W., Grainger, A. T., Liu, Z., & Shi, W. (2021). Inflammation and enhanced atherogenesis in the carotid artery with altered blood flow in an atherosclerosis-resistant mouse strain. PHYSIOLOGICAL REPORTS, 9(11). doi:10.14814/phy2.14829
2020
Jones, M. B., An, A., Shi, L. J., & Shi, W. (2020). Regional Variation in Genetic Control of Atherosclerosis in Hyperlipidemic Mice.. G3 (Bethesda, Md.), 10(12), 4679-4689. doi:10.1534/g3.120.401856
Grainger, A. T., Krishnaraj, A., Quinones, M. H., Tustison, N. J., Epstein, S., Fuller, D., . . . Shi, W. (2021). Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images. ACADEMIC RADIOLOGY, 28(11), 1481-1487. doi:10.1016/j.acra.2020.07.010
Fuller, D. T., Grainger, A. T., Manichaikul, A., & Shi, W. (2020). Data on genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains. DATA IN BRIEF, 29. doi:10.1016/j.dib.2020.105165
2019
Fuller, D. T., Grainger, A. T., Manichaikul, A., & Shi, W. (2020). Genetic linkage of oxidative stress with cardiometabolic traits in an intercross derived from hyperlipidemic mouse strains. ATHEROSCLEROSIS, 293, 1-10. doi:10.1016/j.atherosclerosis.2019.11.034
Li, J., Cechova, S., Wang, L., Isakson, B. E., Le, T. H., & Shi, W. (2019). Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 316(6), F1141-F1150. doi:10.1152/ajprenal.00567.2018
Zhao, J., Huangfu, C., Chang, Z., Grainger, A. T., Liu, Z., & Shi, W. (2019). Atherogenesis in the Carotid Artery with and without Interrupted Blood Flow of Two Hyperlipidemic Mouse Strains.. Journal of vascular research, 56(5), 241-254. doi:10.1159/000502691
2018
Banizs, A. B., Huang, T., Nakamoto, R. K., Shi, W., & He, J. (2018). Endocytosis Pathways of Endothelial Cell Derived Exosomes. MOLECULAR PHARMACEUTICS, 15(12), 5585-5590. doi:10.1021/acs.molpharmaceut.8b00765
Grainger, A. T., Tustison, N. J., Qing, K., Roy, R., Berr, S. S., & Shi, W. (2018). Deep learning-based quantification of abdominal fat on magnetic resonance images. PLOS ONE, 13(9). doi:10.1371/journal.pone.0204071
2017
Chang, Z., Huangfu, C., Grainger, A. T., Zhang, J., Guo, Q., & Shi, W. (2017). Accelerated atherogenesis in completely ligated common carotid artery of apolipoprotein E-deficient mice. ONCOTARGET, 8(66), 110289-110299. doi:10.18632/oncotarget.22685
Grainger, A. T., Jones, M. B., Chen, M. -H., & Shi, W. (2017). Polygenic Control of Carotid Atherosclerosis in a BALB/cJ x SM/J Intercross and a Combined Cross Involving Multiple Mouse Strains. G3-GENES GENOMES GENETICS, 7(2), 731-739. doi:10.1534/g3.116.037879
Garrett, N. E. I. I. I., Grainger, A. T., Li, J., Chen, M. -H., & Shi, W. (2017). Genetic analysis of a mouse cross implicates an anti-inflammatory gene in control of atherosclerosis susceptibility. MAMMALIAN GENOME, 28(3-4), 90-99. doi:10.1007/s00335-016-9677-0
2016
Grainger, A. T., Jones, M. B., Li, J., Chen, M. -H., Manichaikul, A., & Shi, W. (2016). Data on genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice. DATA IN BRIEF, 9, 1067-1069. doi:10.1016/j.dib.2016.11.058
Grainger, A. T., Jones, M. B., Li, J., Chen, M. -H., Manichaikul, A., & Shi, W. (2016). Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice. ATHEROSCLEROSIS, 254, 124-132. doi:10.1016/j.atherosclerosis.2016.10.011
Shi, W., Wang, Q., Choi, W., & Li, J. (2016). Mapping and Congenic Dissection of Genetic Loci Contributing to Hyperglycemia and Dyslipidemia in Mice. PLOS ONE, 11(2). doi:10.1371/journal.pone.0148462
2015
Wang, Q., Grainger, A. T., Manichaikul, A., Farber, E., Onengut-Gumuscu, S., & Shi, W. (2015). Genetic linkage of hyperglycemia and dyslipidemia in an intercross between BALB/cJ and SM/J Apoe-deficient mouse strains. BMC GENETICS, 16. doi:10.1186/s12863-015-0292-y
Zhou, W., Chen, M. -H., & Shi, W. (2015). Influence of phthalates on glucose homeostasis and atherosclerosis in hyperlipidemic mice. BMC ENDOCRINE DISORDERS, 15. doi:10.1186/s12902-015-0015-4
Huang, T., Banizs, A. B., Shi, W., Klibanov, A. L., & He, J. (2015). Size Exclusion HPLC Detection of Small-Size Impurities as a Complementary Means for Quality Analysis of Extracellular Vesicles.. Journal of circulating biomarkers, 4, 6. doi:10.5772/61148
Liu, S., Li, J., Chen, M. -H., Liu, Z., & Shi, W. (2015). Variation in Type 2 Diabetes-Related Phenotypes among Apolipoprotein E-Deficient Mouse Strains. PLOS ONE, 10(5). doi:10.1371/journal.pone.0120935
2014
Zhang, Y., Kundu, B., Zhong, M., Huang, T., Li, J., Chordia, M. D., . . . Shi, W. (2015). PET imaging detection of macrophages with a formyl peptide receptor antagonist. NUCLEAR MEDICINE AND BIOLOGY, 42(4), 381-386. doi:10.1016/j.nucmedbio.2014.12.001
Banizs, A. B., Huang, T., Dryden, K., Berr, S. S., Stone, J. R., Nakamoto, R. K., . . . He, J. (2014). In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery. INTERNATIONAL JOURNAL OF NANOMEDICINE, 9, 4223-4230. doi:10.2147/IJN.S64267
2013
Rowlan, J. S., Li, Q., Manichaikul, A., Wang, Q., Matsumoto, A. H., & Shi, W. (2013). Atherosclerosis Susceptibility Loci Identified in an Extremely Atherosclerosis-Resistant Mouse Strain. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2(4). doi:10.1161/JAHA.113.000260
Rowlan, J. S., Zhang, Z., Wang, Q., Fang, Y., & Shi, W. (2013). New quantitative trait loci for carotid atherosclerosis identified in an intercross derived from apolipoprotein E-deficient mouse strains. PHYSIOLOGICAL GENOMICS, 45(8), 332-342. doi:10.1152/physiolgenomics.00099.2012
2012
Zhang, Z., Rowlan, J. S., Wang, Q., & Shi, W. (2012). Genetic Analysis of Atherosclerosis and Glucose Homeostasis in an Intercross Between C57BL/6 and BALB/cJ Apolipoprotein E-Deficient Mice. CIRCULATION-CARDIOVASCULAR GENETICS, 5(2), 190-201. doi:10.1161/CIRCGENETICS.111.961649
Li, J., Lu, Z., Wang, Q., Su, Z., Bao, Y., & Shi, W. (2012). Characterization of Bglu3, a mouse fasting glucose locus, and identification of Apcs as an underlying candidate gene. PHYSIOLOGICAL GENOMICS, 44(6), 345-351. doi:10.1152/physiolgenomics.00087.2011
2011
Li, J., Wang, Q., Chai, W., Chen, M. -H., Liu, Z., & Shi, W. (2011). Hyperglycemia in apolipoprotein E-deficient mouse strains with different atherosclerosis susceptibility. CARDIOVASCULAR DIABETOLOGY, 10. doi:10.1186/1475-2840-10-117
Manichaikul, A., Wang, Q., Shi, Y. L., Zhang, Z., Leitinger, N., & Shi, W. (2011). Characterization of Ath29, a major mouse atherosclerosis susceptibility locus, and identification of Rcn2 as a novel regulator of cytokine expression. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 301(3), H1056-H1061. doi:10.1152/ajpheart.00366.2011
Lu, Z., Yuan, Z., Miyoshi, T., Wang, Q., Su, Z., Chang, C. C., & Shi, W. (2011). Identification of Soat1 as a Quantitative Trait Locus Gene on Mouse Chromosome 1 Contributing to Hyperlipidemia. PLOS ONE, 6(10). doi:10.1371/journal.pone.0025344
2010
Shi, W., Zhang, Z., Chen, M. -H., Angle, J. F., & Matsumoto, A. H. (2010). Genes Within the MHC Region Have a Dramatic Influence on Radiation-Enhanced Atherosclerosis in Mice. CIRCULATION-CARDIOVASCULAR GENETICS, 3(5), 409-413. doi:10.1161/CIRCGENETICS.110.957449
Jiang, B., Khandelwal, A. R., Rogers, L. K., Hebert, V. Y., Kleinedler, J. J., Zavecz, J. H., . . . Dugas, T. R. (2010). Antiretrovirals Induce Endothelial Dysfunction via an Oxidant-Dependent Pathway and Promote Neointimal Hyperplasia. TOXICOLOGICAL SCIENCES, 117(2), 524-536. doi:10.1093/toxsci/kfq213